
 1

White Paper #18
Level: Advanced

Version 2.0 revised 07 September 2005

Implementation Notes for the IccProfLib Color
Management Module (CMM) in SampleICC

The SampleICC project (see http://sampleicc.sourceforge.net) is an open source
object oriented C++ development effort that was written to provide an example of
how various aspects of color management can be implemented. The basis of
SampleIcc was originally written by Max Derhak as a class project for the Color
Systems course while pursuing an MS degree at the Rochester Institute of
Technology. After extensive revisions (directed by the ICC Architecture Working
Group) the project was turned over to the International Color Consortium as a
means of helping to describe color management implementation approaches
inferred by the ICC Color profile specification (see http://www.color.org).
The SampleICC project contains a platform independent library (named
IccProfLib) that provides a complete implementation for reading, writing, and
applying ICC profiles. The IccProfLib sub-project has HTML documentation that
describes the classes and their interfaces, but the basic relationship between the
classes as it relates to applying profiles is not necessarily clear. This document
complements the IccProfLib class documentation by describing how the objects
interact when applying profiles. This document assumes familiarity with both
object oriented programming and the ICC profile specification. Overview
information will be given related to classes within IccProfLib. For specific details
consult the implementation as defined by the source code. (Note: IccProfLib was
initially named IccLib, but has since been changed to avoid conflicts with existing
Libraries).
There are multiple ways to go about implementing Color Management (See ICC
White Paper #7 – The role of ICC profiles in a colour reproduction system). The
implementation presented in this document represents the fulfillment of a ‘Dumb’
CMM with the smarts of color rendering contained in the ICC profiles themselves.
This does not preclude the possibility of implementing a ‘Smart’ CMM based
upon the profile file support provided by IccProfLib.

Overview
The following discussion makes use of Figure 1 (on following page) to help
explain how profiles are applied within IccProfLib.
ICC profile files are read, written, and otherwise manipulated through the use of
CIccProfile objects that have attached CIccTag objects which contain the

 2

associated profile tag data. The application of profiles is implemented separately
through the use of a CIccCmm class object.
A CIccCmm class object is used to administer and perform color management
transforms. This object manages a list of CIccXform derived objects which are
associated with corresponding CIccProfile objects. Each CIccXform object
obtains information from its corresponding CIccProfile object and attached
CIccTag objects in order to perform the requested color transformations.

Figure 1 - Object relationships in IccProfLib

Profile application is performed by using the CIccCmm::Apply() method after a
CIccCmm object has been properly constructed and initialized. This method
makes use of the list of CIccXform objects with their associated CIccProfile
objects to perform color space transforms.
When applying pixel colors, the CIccCmm object assumes that data pixels have
been converted to an internal floating point encoding with all values ranging from
0.0 to 1.0. Results from calling the CIccCmm::Apply() method are also in this
range. The CIccCmm class provides overloaded conversion member methods
(CIccCmm::ToInternalEncoding() and CIccCmm::FromInternalEncoding()) to
facilitate conversion to/from typical encoding range values used by various pixel
formats. The CIccCmm class provides the static Boolean member function
CIccCmm::IsInGamut() to determine whether the internal representation of the
result is in Gamut when using a Gamut tag from a profile.

CIccCmm

Ordered
List of

Transforms CIccXform
#1

CIccXform
#2

CIccXform
#N

CIccProfile CIccProfile CIccProfile

CIccPCS

CIccTag
Objects

CIccTag
Objects

CIccTag
Objects

Formatted: Space After: 6 pt

 3

CIccCmm Details
There are five stages in the life of a CIccCmm object.

1. Creation – The following information is provided to a CIccCmm object
when it is created:

a. The source and destination color spaces are identified. In many
cases the color spaces can specified as undefined – the color
spaces will be determined by the attached profiles.

b. In preparation for the next stage, the initial transform side (Input vs
Output) is identified.

2. Attachment –One or more calls to a CIccCmm::AddXform() method are
used to attach one or more ICC profiles to the CIccCmm object. There are
several overloaded versions of this method:

a. In one version the first argument is the file path to the ICC profile
file.

b. In another overloaded version the first argument is a pointer to
CIccProfile object with the profile already loaded (in which case the
ownership of the CIccProfile object is passed to the CIccCmm
object).

c. In another overloaded version passes a reference to a CIccProfile
object (in which case the CIccProfile object is copied with the copy
owned by the CIccCmm Object).

d. In another version the first argument is a pointer to a memory
based ICC profile file with the second argument being the length of
the file in memory.

Regardless of which version is used, the CIccCmm object keeps track of
whether the input or output side of an attached profile should be used. It
also keeps track of the connecting color spaces and ensures compatibility.
Any number of profiles can be attached to a CIccCmm object. The order in
which profiles are attached to the CIccCmm object defines the order that
the appropriate transforms will be applied.
Only a single transform from a profile will be used for each attached
profile. Since multiple transforms (in separate tags) can be stored in a
single ICC profile, CIccCmm::AddXform() arguments are used to
determine which transform should be used. The nIntent argument allows
selection between rendering intents, and the nLutType argument allows
selection between the Color, Preview, and Gamut tags. NamedColor
profile selection is automatically detected when using the basic Color
transforms. (Note: The Preview and Gamut transforms are considered to
be output transforms for automatic input/output transform selection
purposes).

 4

CIccCmm::AddXform() creates a CIccXform object for each profile as it is
attached to both keep track of the profile and provide the implementation
of the transformation using data from the profile.

3. Initialization – The CIccCmm::Begin() method is used to indicate that no
more profiles will be attached, and that color transformation processing
will now begin. The CIccCmm::Begin() method performs final color space
verification and then each attached CIccXform object is initialized (using
the CIccXform::Begin() method) to begin color transformations.

4. Apply – The CIccCmm::Apply() method applies the ordered sequence of
CIccXform objects to the source pixel to arrive at destination pixel values.
This method uses a CIccPCS object with the initial color space to keep
track of the current color space as transforms are applied. A temporary
pixel is also defined and modified within the method. The source pixel,
temporary pixel, and destination pixel are all involved in the concept of the
“current” pixel. For each transform in the ordered CIccXform object list the
“current” pixel is checked with the CIccPCS::CheckPCS() method to make
sure that the current color space agrees with the input color space of the
next transform. The adjusted pixel is then passed to the
CIccXform::Apply() method to perform the pixel transformation. Once the
last transform is performed, the CIccPCS::CheckLast() method is used to
make any final color space adjustments.

5. Destruction – The CIccXform list and its accompanying objects are
released.

Note: IccProfLib provides support for all color profile types (ICC.1:2004-10
Section 8.3 through 8.9). All color profile types except Named color profiles
(ICC.1:2004-10 Section 8.9) are supported by the CIccCmm class. The
CIccNamedCmm class (also defined in IccCmm.cpp) is derived from CIccCmm
class and supports the use of named profiles in addition to the capabilities
offered by the CIccCmm class. This was done to avoid the cost of the extra
overhead of supporting named colors in the basic CMM class as defined by
CIccCmm. The CIccNamedCmm class provides additional
CIccNamedCmm::Apply() method interfaces to support the input and/or output of
color names. This approach allows multiple Named Color profiles to be linked
together using color names as a connection space.

CIccXform Details
CIccXform is the base class that defines the basic interface for performing pixel
transformations. There are multiple classes that are derived from this class that
provide specific implementations. There are three important static member
methods for the CIccXform base class: They include:

1. The static member function CIccXform::Create() is used to create actual
instances of CIccXform objects. This function uses a CIccProfile object
argument to decide which specific CIccXform object to create. The type of
CIccXform depends upon the type of transform that is implied by the ICC

 5

Profile. Three types are possible: Matrix/TRC, Multi-dimensionsal lookup
table, and Named Color indexing. The CIccXform choices include:

• CIccXformMatrixTRC – Uses the RGB chromaticities and transfer
functions to perform pixel transforms.

• CIccXform3DLut – Performs pixel transformation on 3D input data.
The extracted tag from the attached CIccProfile is determined by
the rendering intent and input/output flag. The CIccXform3DLut
object is also configured to perform either linear or tetrahedral
interpolation.

• CIccXform4DLut – Performs pixel transformation on 4D input data.
The extracted tag from the attached CIccProfile is determined by
the rendering intent and input/output flag. The CIccXform4DLut
object only performs linear interpolation.

• CIccXformNDLut – Performs pixel transformation on N-dimensional
input data. The extracted tag from the attached CIccProfile is
determined by the rendering intent and input/output flag. The
CIccXformNDLut object only performs linear interpolation.

• CIccXformNamedColor – Performs color transforms using text
strings to define the color. The static CIccXform::Create() method
is passed an argument that specifies whether or not the calling
CIccCmm object supports named colors. If named colors are not
supported, then this object type will not be created.

2. The protected member method CIccXform::CheckSrcAbs() is called by
the derived CIccXform::Apply() methods to perform any required absolute
to relative colorimetry transformation. This method also handles legacy
PCS encoding, and Version 4 to Version 2 Perceptual black point
translation. (Note: If the source color space is not a PCS color space this
method makes no adjustments to the pixel).

3. The protected member method CIccXform::CheckDstAbs() is called by
the derived CIccXform::Apply() methods to perform any required relative
to absolute colorimetry transformation. This method also handles legacy
PCS encoding, and Version 2 to Version 4 Perceptual black point
translation. (Note: If the destination color space is not a PCS color space
this method makes no adjustments to the pixel).

There are two virtual methods that all derived CIccXform objects need to
implement. These are:

1. The virtual CIccXform::Begin() method is called during CIccCmm::Init() to
allow the CIccXform derived object to initialize itself relative to the
attached color spaces, input/output transform flag, and rendering intent.
Additional important methods that are also used include:

 6

• CIccXformMatrixTRC – The CIccXformMatrixTRC::Begin() method
calculates a matrix and 1D LUT’s to use. In some cases an inverse
matrix and LUT’s are calculated. (See implementation for details).

• CIccXform3DLut, CIccXform4DLut, CIccXformNDLut – Extracts
appropriate curve and LUT tags from the profile and prepares for pixel
transformations.

• CIccXformNamedColor – Identifies the correct
CIccXformNamedColor::Apply() interface to use based upon attached
color spaces.

2. A virtual CIccXform::Apply() method does most of the work of color
transformation. Each derived object provides the implementation of this
method to perform the specific operations that are required to implement
the color transformation. The order of the operations depends upon
whether the CIccXform object represents an input transformation or an
output transformation. The operations by transform type are as follows:
• CIccXformMatrixTRC – If the CIccXform object represents an input

transform the following steps are performed:
a. CIccXform::CheckSrcPCS()
b. Apply 1D curves lookup
c. Apply matrix
d. CIccXform::CheckDstPCS()

If the Xform represents an output transform, the following steps are
performed:

a. CIccXform::CheckSrcPCS()
b. Apply matrix
c. Apply 1D curves lookup
d. CIccXform::CheckDstPCS()

• CIccXform3DLut, CIccXform4DLut, CIccXformNDLut – The following
lists show the order of operations. Not all profile tags provide data to
perform operations in which case steps associated with missing data
are simply ignored.
If the CIccXform object represents an input transform the following
steps are performed:

a. CIccXform::CheckSrcPCS()
b. Apply 1D B curves lookup
c. Apply matrix

 7

d. Apply 1D M curves lookup
e. Perform multi-dimensional interpolation
f. Apply 1D A curves lookup
g. CIccXform::CheckDstPCS()

If the Xform represents an output transform, the following steps are
performed:

a. CIccXform::CheckSrcPCS()
b. Apply 1D A curves lookup
c. Perform multi-dimensional interpolation
d. Apply 1D M curves lookup
e. Apply matrix
f. Apply 1D B curves lookup
g. CIccXform::CheckDstPCS()

• CIccXformNamedColor –This object type uses the
CIccTagNamedColor2 tag object of the associated CIccProfile to
perform the color transformations. The CIccXformNamedColor object
behaves differently than the other CIccXform object types. Different
CIccXformNamedColor::Appy() interfaces are supported to allow for
transforms involving named colors. It requires that a named color is
always used as either the input or the output side of the transform.
Thus direct transforms to/from device coordinates from/to PCS values
are not directly supported. (Note: To accomplish this simply attach the
named profile to a CIccCmm object twice - the first time with the
named color as the output, and the second time with the named color
as the input. This results in two CIccXformNamedColor objects being
used).
If the input color space is a named color space the operations are as
follows:

a. Search for color name in the Named Color tag.
b. If the output color space is PCS then set pixel to corresponding

PCS value and apply CIccXform::CheckDstPCS().
c. Else (the output color space is a device color space) set pixel to

corresponding device values.
If the output color space is a named color space the operations are as
follows:

a. If the input color space is PCS then call
CIccXform::CheckSrcPCS() and then find the color index of the
color whose PCS value has the least ∆E difference to the
source color.

 8

b. Else (the input color space is a device color space) find the
color index of the color whose device coordinate has the
smallest Euclidean distance to the source color.

c. Set destination color to the corresponding index color name.

CIccPCS Details
The CIccPCS object is a disposable object that is used to keep track of the
current color space as transformations are applied within the CIccCmm::Apply()
method. In addition to storing the current color space this object also performs
necessary PCS conversions when connecting profiles with different PCS
characteristics. Such differences include CIEXYZ, CIELab Legacy, and CIELab
Version 4 encodings. Since each of these “color spaces” is considered to be a
Profile Connection Space the CIccPCS object is used to seamlessly translate
between these PCS’s as needed. Two main methods are provided (in addition to
color space access methods):

1. CIccPCS::Check() – This method checks to see if the current color
space defined by the pixel is compatible to the source color space of
the CIccXform object that will be using the pixel. It only makes
conversions if the current color space is a PCS color space.

2. CIccPCS::CheckLast() – This method checks to see if the current
color space defined by the pixel is compatible with the destination color
space. It only makes conversions if the current color space is a PCS
color space.

