

Life of a Color – The Management of a Color

Max Derhak (PhD) Principal Scientist – ONYX Graphics Inc. Co-Chair – International Color Consortium (ICC)

What is Color Management?

- Color Management is related to asking and answering various questions about color
 - —What is it?
 - -How is it formulated, controlled, or made?
 - —What does it look like?
 - -How does it relate to or interact with light?

What is Color Management?

 Color Management is related to asking and answering various questions about color

—What is it?

- -How is it formulated, controlled, or made?
- -What does it look like?
- —How does it relate to or interact with light?

• Key components to Color Management

- -Formulating the questions
- —Finding and providing the answers
- -Communicating everything

What is Color Management?

• Color Management is related to asking and answering various questions about color

—What is it?

- -How is it formulated, controlled, or made?
- -What does it look like?
- -How does it relate to or interact with light?
- Key components to Color Management
 - -Formulating the questions
 - —Finding and providing the answers
 - -Communicating everything

 Systems for Color Management define how these key components are implemented

Questions:

• How much ink is needed to match pixels on screen?

Questions:

- How much ink is needed to match pixels on screen?
- What does this (RGB) pixel "look" like?

or

How much (CMYK) ink is needed to get the same "look"?

Quantifying Perception (Color Matching)

Color matching functions are used to define XYZ (Tristimulus) values

Two colors "match" if XYZ values are the same

$$X = 100 \frac{\int s(\lambda) \cdot r(\lambda) \cdot \overline{x}(\lambda) d\lambda}{\int s(\lambda) \cdot \overline{y}(\lambda) d\lambda}$$
$$Y = 100 \frac{\int s(\lambda) \cdot r(\lambda) \cdot \overline{y}(\lambda) d\lambda}{\int s(\lambda) \cdot \overline{y}(\lambda) d\lambda}$$
$$Z = 100 \frac{\int s(\lambda) \cdot r(\lambda) \cdot \overline{z}(\lambda) d\lambda}{\int s(\lambda) \cdot \overline{y}(\lambda) d\lambda}$$

Quantifying Perception (Color Matching)

The CIELAB Color Space

- Distances between XYZ colors are not perceptually uniform
- The CIELAB color space is a more uniform 3-dimensional color space:
 - CIELAB is defined in terms of XYZ
 - The L* dimension represents lightness
 - The a* axis transitions from green (-a*) to red (+a*) extremes
 - The b* axis transitions from blue (-b*) to yellow (+b*) extremes
 - Combinations of a* and b* define intermediate colors
 - Neutral (grayscale) colors are described when a* and b* are both zero
 - CIELAB values are relative to the illuminant
 - L*=100, a*=0, b*=0 is white regardless of illuminant

 $L^{*} = 116 f(Y / Y_{n}) - 16$ $a^{*} = 500 [f(X / X_{n}) - f(Y / Y_{n})]$ $b^{*} = 200 [f(Y / Y_{n}) - f(Z / Z_{n})]$ where :

$$f(t) = \begin{cases} t^{\frac{1}{3}} & \text{when} \quad t > \left(\frac{6}{29}\right)^3 \\ \frac{1}{3} \left(\frac{29}{6}\right)^2 t + \frac{4}{29} & \text{otherwise} \end{cases}$$

Restating the color management questions

ICC Profile Specification

• ISO 15076-1:

- -v4 ICC profile
- Defines standard container for specifying color management interchange
- -Widely used around the world
- -Predominant in graphic arts workflows.
- -Widespread adoption in commercial and academic software.
- —First published as ISO standard in 2005.
- Very successful at spreading color management to many parts of the world.

Color Management with ICC profiles

- Color Management questions are answered by having a Color Management Module (CMM) apply transform tags from profile files as follows:
- 1. Input profile converts from RGB to XYZ
 - -What XYZ/L*a*b* value does this (RGB) pixel have?
- 2. The CMM converts from XYZ to L*a*b*
 - -Profile Connection Space (PCS) conversion
- **3.** Output profile converts from L*a*b* to CMYK
 - —How much (CMYK) ink is needed to get the same XYZ/L*a*b* value?
- Rendering intents use different transform tags in ICC profiles

v4 ICC transforms have a fixed order

Input Profiles

Output Profiles

Device Link Profiles

Note: In each case steps may be excluded

Limitations of ICC v4 profiles

- Limited ability to answer "What does it look like?"
 - Profile Connection Spaces are defined in terms of a single light source and observer
 - D50 illuminant for 1931 2° standard observer
 - Cannot describe how color changes due to lighting or viewing angles
 - Diffuse uniform illumination assumption
- Limited ability to answer "What is it?"
 - -Structure of ICC v4 unsuitable for some lightweight workflows
- Limited ability to define transforms
 - -Fixed order and limited set of transform elements
 - -Simple transforms are effectively limited to low dimensionality
- Unable to answer "How does it relate to or interact with light?"

ICC v4 can be too restricted

- Example: package print, process + spot colors, with gloss and metallic inks
 - V4 LUT structure not practical beyond 6-7 colors (profiles too large, too slow...)
 - Spot color inks often defined spectrally, but no support for spectral data
 - —Cannot define directional appearance of ink in profile
 - —Cannot preview appearance of package on display or proof
 - —Cannot predict under different observer/viewing conditions

Introducing iccMAX

- iccMAX is the result of nearly ten years work by the Architecture Working Group (AWG) of the ICC
- Aspects (guiding principles) of this work include:
 - —Understanding various color management workflows not addressed or difficult to implement using ICC version 2 and 4 profiles
 - Desire to provide open, cross platform, vendor neutral solutions
 - Desire to open ICC color management to new industries
 - —Define specification document(s)
 - —Provide a reference implementation

ICC v4

 Like a basic LEGO[™] set, the ICC v2/v4 specifications provide basic building blocks for defining and implementing color management workflows

ICC v4

INTERNATIONAL

COLOR CONSORTIUM

iccMAX

- Like a basic LEGO[™] set, the ICC v2/v4 specifications provide basic building blocks for defining and implementing color management workflows
- iccMAX provides additional building blocks and capabilities to ask and answer more complex questions related to color management
- All while maintaining backwards compatibility with v2/v4

Defining color workflows with iccMAX

- iccMAX provides a platform for defining specific color management workflows
- Each specific color workflow is defined using a subset of iccMAX as an Interoperability Conformance Specification (ICS) document
- An ICS is like defining a smaller kit built from the master set of building blocks
 - Only those things needed from iccMAX are used
- Products can choose which ICS workflows
 they support
- This allows for extensibility of iccMAX as new workflows can be defined (adding new blocks) without requiring existing ICSs (and products based on those ICSs) to change

iccMAX Building Block Overview

<u>Color Space Extensions</u>

- Spectral connection spaces
- Profile Connection Condition (PCC) tags
- PCS Transforms
- Sparse matrix encoding
- Material Connection Spaces
- Increased number of Device Channels
- <u>multiProcessingElements</u>
 - 1-D Look Up Tables (LUTs)
 - Arbitrary sized matrices
 - N-dimensional LUTs
 - Calculator element
 - ICC Color Appearance Model element
 - Tint Array element
- Hierarchical tag types
 - Named Color Tag Array
 - Support for angular dependencies via Bidirectional Reflectance Distribution Functions (BRDF)
 - Profile Sequence Information
- Other Extensions
 - Color Space Encoding profiles
 - Gamut Boundary Description encoding
 - Color Measurement (CxF) tag encoding
 - UTF8 text & UTF16 encoding
 - Additional Numeric Array Types

Ν

 $\cdot \cdot NxM$

CxF

Two iccMAX Representations

Binary

- iccMAX specification extends on ICC v4 header and tag structures with additional tags and tag types
- Provides a compact format for embedding and communicating about color

• XML

- Reference implementation (ReflccMAX) provides tools to convert between binary and XML representations
- Human readable and modifiable
- Complex tools not always required to create iccMAX profiles

🔐 F	\icc-c	lev\Color\Re	flccMAX\Test	ing\Calc\srgbCalcTest.xml -	Notepad++		X
Eile	<u>E</u> di	t <u>S</u> earch	View Encod	ding <u>L</u> anguage Se <u>t</u> tings	Macro Run TextFX Pl	ugins <u>W</u> indow <u>?</u>	x
	B (8 🖷 🔒	To 😂 🖌	hh 2 C # 4	2 3 3 5 5	1 🗐 🖉 💽 🔊 🗉 🦉	
smbCalcTest xml X							
	1	<2 ym]	versio	n="1 0" encodir	a="11"F-8"2>		
	2		rofilo	II- 1.0 EIICOUII	Ig="OIF=0":>		
	2		ader>				E
	1		Droforr		forrodCMMTupo		_
	5		Drofilo	Vorsion>5 0//Dr	ofiloVorcion		
	6		Profile	DeviceClass)ena	c/ProfileDevic	oClass	
	7		DataCol	ourSpace>BCB </th <th>DataColourSpace</th> <th>></th> <th></th>	DataColourSpace	>	
	8		DCS>XV7		Datacoroaropace		
	9		Creatio	nDateTime>now </th <th>CreationDateTim</th> <th>e></th> <th></th>	CreationDateTim	e>	
1	0		Drofile	Flags EmbeddedI	nFile="false" H	seWithEmbeddedF	ataOn1
	1		Devicel	ttributes Refle	ctiveOrTranspar	ency="reflectiv	
1	2		Renderi	ngIntent>Relati	wes/RenderingIn	tent>	o ore
1	3		PCST11	minant>	ve () nondorringri	concy	
	4	T i	<xx7.nu< th=""><th>mber X="0 96420</th><th>288" V="1 00000</th><th>000" 7="0 82490</th><th>540"/></th></xx7.nu<>	mber X="0 96420	288" V= "1 00000	000" 7="0 82490	540"/>
	5		/PCST11	uminant>	200 2 200000	000 2 0.02100	
1	6		Profile	Creator>ICC <th>rofileCreator></th> <th></th> <th></th>	rofileCreator>		
	7		Profile	TD>34562ABF9940	CD066D2C5721D0D	68C5D <th></th>	
	8	- <th>leader></th> <th></th> <th></th> <th>000000 () 11011101</th> <th></th>	leader>			000000 () 11011101	
	9	П «та	as>				
2	0		multiLo	calizedUnicodeT	vne>		
2	1	T I	<tagsi< th=""><th>gnature>desc<!--1</th--><th>agSignature></th><th></th><th></th></th></tagsi<>	gnature>desc 1</th <th>agSignature></th> <th></th> <th></th>	agSignature>		
2	2		<local< th=""><th>izedText Langua</th><th>geCountry="enUS</th><th>"><!-- [CDATA[sRGB</th--><th>alc alc</th></th></local<>	izedText Langua	geCountry="enUS	"> [CDATA[sRGB</th <th>alc alc</th>	alc alc
2	3		/multiL	ocalizedUnicode	Tvpe>		
2	4		multiPr	ocessElementTyp	ie>		
2	5		<tagsi< th=""><th>qnature>A2B1<!--1</th--><th>agSignature></th><th></th><th></th></th></tagsi<>	qnature>A2B1 1</th <th>agSignature></th> <th></th> <th></th>	agSignature>		
2	6	ė.	<multi< th=""><th>ProcessElements</th><th>InputChannels=</th><th>"3" OutputChann</th><th>nels="3</th></multi<>	ProcessElements	InputChannels=	"3" OutputChann	nels="3
2	7	ģ		<calculatorel< th=""><th>ement InputChan</th><th>nels="3" Output</th><th>Channe</th></calculatorel<>	ement InputChan	nels="3" Output	Channe
2	8	¢		<subeleme< th=""><th>nts></th><th></th><th></th></subeleme<>	nts>		
14	4	¢.	<m></m>	ainFunction>			
14	5	{					
14	6	1 1 1					
14	7	tput (0,3)				
14	8						
14	9	tget (0, 3)				
15	0	sum (3)				
15	1	3 eq					
15	2	tput (3)				
15	3						
15	4	1 1 1					
15	5	tsav (4, 3)				
15	6	sum (3	0				
15	7	3 eq					
15	8	tput (7)				-
•							Þ
lengt	h • 12	7/3 lines :	869	n:1 Col:30 Sel:010	UNIX	LITE-8	INS

Questions answerable using iccMAX

Questions answerable using iccMAX

- What XYZ/L*a*b* value for a particular observer under a particular illuminant does this pixel value have?
- What device values are needed to get a XYZ/L*a*b* value for a particular observer under a particular illuminant?
- What is the XYZ/L*a*b* value for an RGB pixel that has a specified color encoding space?
- How do I convert XYZ/L*a*b* values for one observer and illuminant to XYZ/L*a*b* values for a different observer and/or illuminant?
- How is light absorbed / reflected / transmitted by a surface with specific device values?
- What device values are needed to get light absorbed / reflected / transmitted in a specific way?
- How do XYZ/L*a*b* values change as the observer and/or illuminant change?

More questions answerable using iccMAX

- How do you manipulate spectral reflectance?
- What is the perceived XYZ/L*a*b value of a printed color on a substrate with optical brighteners or printed using fluorescent ink?
- How do you handle lots of device channels?
- How does reflected light change as light angle and viewing angle change?
- What is the spectrum of light coming off a monitor?
- How does light from a monitor change due to viewing angle?
- How is light reflected by a tint of a named color?
- What is the probability that a pixel of a multi-spectral capture contains a specific material?

- Q. What XYZ/L*a*b* value for a particular observer under a particular illuminant does this pixel value have?
- Q. What device values are needed to get a XYZ/L*a*b* value for a particular observer under a particular illuminant?
- iccMAX allows for color management to be defined in terms of arbitrary observers and illuminants
 - Profiles define color matching functions of the observer, spectral power distribution of the illuminant, and transforms to convert to/from "standard" D50 illuminant with 2° observer

INTERNATIONAL COLOR CONSORTIUM

- Q. What is the XYZ/L*a*b* value for an RGB pixel that has a specified color encoding space?
- Camera manufacturers have asked for simplified profiles that just specify the color encoding space of the pixels
- iccMAX color encoding space profiles only contain a rudimentary header and tag identifying the color encoding space
- The iccMAX CMM figures out what transform is appropriate to use and applies it

- Q. How do I convert XYZ/L*a*b* values for one observer and illuminant to XYZ/L*a*b* values for a different observer and/or illuminant?
- Profile Connection Conditions (PCC) tags in an iccMAX profile provide transforms for an iccMAX capable CMM to make conversions when needed
- PCC tags can be populated using:
 - Either a Chromatic Adjustment Transform (CAT) or more advanced Color Appearance Model CAM to adjust for differences in illuminant
 - OR A Material Adjustment Transform (MAT) is appropriate for differences in observer and/or illuminant
- MATs are defined based on a color equivalency representation
 - Defined by "Wpt Normalization" from Max Derhak's PhD dissertation

Color Appearance Model

Wpt (Waypoint) Normalization

- Q. How is light absorbed / reflected / transmitted by a surface with specific device values?
- Q. What device values are needed to get light absorbed / reflected / transmitted in a specific way?
- Q. How do XYZ/L*a*b* values change as the observer and/or illuminant change?
- iccMAX profiles can be connected using spectrally based color spaces
 —Reflectance, Transmittance, etc.
- The iccMAX CMM applies observer and illuminant information as needed from Profile Connection Conditions (PCC) to determine XYZ/L*a*b* values
- This allows application of observing conditions to be deferred to time when profiles are applied

Q. How do you manipulate spectral reflectance?

- Characteristic spectral reflectances can be associated on a hue by hue basis with polar "Wpt coordinates"
 - See Max Derhak's PhD dissertation
- A simple (linear) method can then be applied to estimate and manipulate spectral reflectances
- iccMAX profile creators can then incorporate these techniques to:
 - Perform spectral gamut mapping
 - Perform spectral color rendering
 - Perform spectral adjustment in abstract profiles
 - Estimate spectral reflectance directly from sRGB

Q. How is reflected light affected by the use of a substrate with optical brighteners or printed using fluorescent inks?

 Fluorescence occurs when the wavelengths of light are changed by a surface (rather than just being absorbed or reflected)

INTERNATIONAL

COLOR CONSORTIUM

- Substrates with optical brighteners and fluorescent inks appear brighter as a result
- iccMAX provides support for modeling and characterizing these situations

Q. How do you handle lots of device channels?

 MultiProcesElements in an iccMAX profile allow for color transforms to be programmed

-Rather than be sampled in a multi-dimensional lookup table

• iccMAX Profiles can be smaller and potentially more accurate

-Especially with lots of device channels

Q. How does reflected light change as lighting and viewing angles change?

- Glossy, metallic, and pearlescent surfaces reflect light based on both lighting and viewing angle
- Texture also factors into how light reflects from a surface
- iccMAX provides the ability to model and characterize how light reflects off a surface based on lighting and viewing angles
 - —Texture maps can also be included

 New quantum dot display technology results in emission spectra with larger gamuts using narrower emission bands

INTERNATIONAL

COLOR CONSORTIUM

- Variability in observer sensitivity functions results in greater variability in color matching
 - —Observer specific color management may be needed for color critical work!
- iccMAX provides support for spectrally modeling displays and applying observer specific sensitivity functions

Q. How does light from a video display change due to position and viewing angle?

- Various display technologies often change color appearance based on where you are looking from as well as where you are looking at on the display
- iccMAX provides support for both modeling and characterizing display output based on relative display location and viewing angle

Q. How is light reflected by a tint of a named color?

- One or more of the following can be encoded for each named color in an iccMAX named color profile on a tint by tint basis:
 - -Output Device values
 - —XYZ/L*a*b* values
 - -Reflectance / Transmittance / Fluorescence values
 - -Opacity/overprint characteristics
 - —How light changes by viewing and observing angle (BRDF)
- Interpolation is used to find values for intermediate tints

Q. What is the probability that a pixel of a multi-spectral image contains a specific material?

 A multi-spectral image has multiple data channels for each pixel

INTERNATIONAL

COLOR CONSORTIUM

- Identification transforms are applied to determine material probabilities of:
 - —Biomarkers (medical imaging)
 - —Surface features (satellite imaging)
 - Pigment concentrations (fine art imaging / conservation)
- Visualization is then performed based upon these material identifications
- iccMAX provides support for both material identification and visualization

Q. How does iccMAX help with Package Printing?

- Spot colors are spectrally defined
- Any number of colorants are supported using programmable multi-processing elements which estimates spot color overprints
- Preview of directional effects of gloss and metallic inks
- Matches under different viewing conditions are supported by applying observer and illuminant changes

INTERNATIONAL COLOR CONSORTIUM

Conclusions

iccMAX for the Real World

- The complexities of color in the Real World are encompassed by iccMAX
- iccMAX provides the means to answer various questions related to color:
 - —What is it?
 - -How is it formulated, controlled, or made?
 - -What does it look like?
 - —How does it relate to or interact with light?
- iccMAX provides a platform with both flexibility as well as extensibility for modeling and defining color workflows

iccMAX – Where are we now?

 iccMAX has been published as a specification by the International Color Consortium (ICC)

-www.iccmax.org

- Workflow specific ICS documents are under development
- ICC is providing and promoting educational opportunities for developers

-ICC DevCon

- Work is currently underway to make iccMAX an ISO standard
- An open source reference implementation is available
- Individual companies are in process of evaluating and implementing iccMAX features into their products

-This will likely take time!

Reference Material

• ICC web page

-http://www.color.org

• iccMAX web page:

-http://www.iccmax.org

• ICC specification documents:

-http://www.color.org/icc_specs2.xalter

• iccMAX reference implementation:

Max Derhak's PhD dissertation

Spectrally Based Material Color Equivalency: Modeling and Manipulation

-http://scholarworks.rit.edu/theses/8789/

INTERNATIONAL COLOR CONSORTIUM

Thank You Questions?

