CCA RIT Team first experiment summary

Elena Fedorovskaya, Bob Chung, Don Hutcheson, David Hunter, Pierre Urbain Don's hasty update, November 13, 2018

Introduction

- RIT research prompted by the seven datasets in ISO/PAS 15339-2. These CRPCs exhibit consistent color appearance but the statement lacks scientific verification.

CRPC1~CRPC7

CMYK (Pictorial, ISO 12642-2)

Objectives

- Test the hypothesis that CCA depends on multiple datasets with varying gamut volumes, while having consistent tonality, gray balance and hues relative to substrate.
- Examine the suitability of the $95^{\text {th }}$ percentile $\Delta \mathrm{E}_{00}$ as a CCA metric
- $3 \Delta \mathrm{E}_{00}$ ($95^{\text {th }}$ percentile $\Delta \mathrm{E}_{00}$) color difference between adjacent datasets in the Control and the Experimental groups.

Experimental - Sample Preparation

- Use CRPC5 as a starting point to create 7 datasets differing in chroma and gamut volume by $3 \Delta \mathrm{E}_{00}$ at 95% pctl. (Control group).
- Create systematically distorted datasets in terms of
- gray balance
- tone reproduction
- chroma (gamut)
- Differences $3 \Delta \mathrm{E}_{00}$ at $95 \% \mathrm{pctl}$. (Experimental group).

Control Group

- Replace CRPC1~CRPC7 in psychometric testing

- Different C* and gamut
- Same CMYRGB hue angles
- Same tone reproduction
- Same gray balance
- Color differences between adjacent printing conditions are equal.

95h $\Delta \mathrm{Exo}^{0}$	-3d_G7	-2d_G7	-1d_G7	Od_G7	+1d_G7	+2d_G7	+3d_G7
-3d_G7	-----						
-2d_G7	3.1	-----					
-1d_G7	6.2	3.1	-----				
Od_G7	9.2	6.2	3.1	-----			
+1d_G7	12.3	9.3	6.2	3.1	-----		
+2d_G7	15.2	12.2	9.2	6.2	3.1	-----	
+3d_G7	16.8	13.8	10.8	7.9	5.5	3.0	-----

Experimental Groups

CMYK (Pictorial, ISO 12642-2)
CMYK (Pictorial, ISO 12642-2)

- Same C* and gamut
- Same CMYRGB hue angles
- Different tone reproduction
- Same gray balance
- Color differences between adjacent printing conditions are equal.

$95 \mathrm{~h} \Delta \mathrm{E}_{0}$	-3 TVI	-2 TVI	-1 TVI	0	+1 TVI	+2 TVI	+3 TVI
-3 TVI	----						
-2 TVI	3.0	----					
-1 TVI	6.1	3.0	----				
0	9.0	5.9	3.0	----			
+1 TVI	12.0	8.9	6.0	3.0	----		
+2 TVI	14.9	11.9	8.9	6.0	3.0	----	
+3 TVI	17.7	14.9	11.9	9.0	6.0	3.0	----

- Same C* and gamut
- Same CMYRGB hue angles
- Same tone reproduction
- Different gray balance
- Color differences between adjacent printing conditions are equal.

95th $\Delta \square_{0}$	$3 Y$	2 Y	$1 Y$	0	1B	2B	3B
$3 Y$	-----						
2 Y	3.0	-----					
1 Y	6.1	3.0	-----				
0	9.1	6.1	3.0	-----			
1B	12.2	9.1	6.1	3.0	---		
2B	15.2	12.1	9.1	6.1	3.0	-	
3B	18.1	15.1	12.1	9.1	6.0	3.0	-----

Experimental - Sample Verification

- Verify all dataset and profiles (Annex C)
- Apply profiles to test images and output hard copy, per flow chart.
- Measure hard copies of the Idealliance 12647-7 digital control strip (84 patches) and calculate the 95 th percentile $\Delta \mathrm{E}_{00}$ between adjacent datasets.

Experimental - Psychometric Testing 1

- There is a 'hole' in the Control group. Rank the candidate images that exhibit (from the most to the least) consistent color appearance in relation to the Control group.

Visual Variation Between Datasets

- The next five slides visualize the seven basic datasets, and the distorted datasets (TVI, Contrast, Gray balance, Chroma)
- Each dataset in each group differs from it's neighbour by $3 \Delta \mathrm{E}_{00} 95$ th pctl.
- The left image is a nominal reference

7 datasets

TVI

S-curve

Graybal

Chroma

Experimental - Psychometric Testing 2

Which set in pair has higher consistency of color appearance?
Provide rating 1- excellent, 2-good, 3 -fair, 4 - poor, 5 -unacceptable

or

or

Results - Sample Verification

- Visual simulation meets expectations.
- The average 95th percentile color difference between adjacent datasets in the Control group is $3.1 \Delta \mathrm{E}_{00}$.
- The average 95th percentile color difference between adjacent datasets in the Experimental group is $3.0 \Delta \mathrm{E}_{00}$.
- The average 95th percentile $\Delta \mathrm{E}_{00}$ between the Control dataset (2d_G7) and gray balance distorted group is $3 \Delta \mathrm{E}_{00}, 6 \Delta \mathrm{E}_{00}$, or $9 \Delta \mathrm{E}_{00}$.

Results - Visual Simulation

- Control group vs. CRPC1~CRPC7

7 new datasets from CRPC5 by scaling white point, black point and chroma with constant primary hue angles, G7 tonality and gray balance, with the 95th percentile $\Delta \mathrm{E}_{00}$ between any two adjacent datasets $=3$

Visual simulation of the Control group (-3d~3d)

Visual simulation of the CRPCs (CRPC1~CRPC7)

Results - Visual Simulation

- Experimental group (tonal curve shape vs. TVI)

12 datasets varying in tonality (3 lighter, 3 darker, 3 lower contrast, 3 higher contrast) and 18 datasets with gray balance (3 each +CMYRGB) variations from one reference control dataset, with 395 th percentile $\Delta \mathrm{E}_{00}$ between any two adjacent datasets.

- Visual simulation of the Experimental group (S-3 to S+3)

- Visual simulation of the Experimental group (TVI-3 to TVI+3)

Results - Visual Simulation

- Experimental group (gray balance in complementary hue angles)
- Visual simulation of the Experimental group (GB_C-R)

- Visual simulation of the Experimental group (GB_Y-B)

- Visual simulation of the Experimental group (GB_M-G)

Results - Analysis of the Experimental Group

- 2 d vs. GB_C1 (B1, G1, M1, R1, Y1 are omitted.)
- $95^{\text {th }}$ percentile CRF: $3.1 \Delta \mathrm{E}_{00}$

Results - Analysis of the Experimental Group

- 2 d vs. GB_C2 (B2, G2, M2, R2, Y2 are omitted.)
- $95^{\text {th }}$ percentile CRF: $6.1 \Delta \mathrm{E}_{00}$

Results - Analysis of the Experimental Group

- 2 d vs. $\mathrm{S}+1$ (S-3, $\mathrm{S}-2, \mathrm{~S}-1, \mathrm{~S}+2, \mathrm{~S}+3$ are omitted.)
- $95^{\text {th }}$ percentile CRF: $3.0 \Delta \mathrm{E}_{00}$

Results $-95^{\text {th }} \Delta \mathrm{E}_{00}$ of Adjacent Datasets

- Experimental datasets (GB_3Y~3B)
- '0’ represents ‘+2d_G7’

95th Δ ®o $_{0}$	$3 Y$	$2 Y$	$1 Y$	0	$1 B$	$2 B$	$3 B$
$3 Y$	----						
$2 Y$	3.0	----					
1Y	6.1	3.0	-----				
0	9.1	6.1	3.0	-----			
1B	12.2	9.1	6.1	3.0	----		
2B	15.2	12.1	9.1	6.1	3.0	----	
3B	18.1	15.1	12.1	9.1	6.0	3.0	-----

- Experimental datasets (-3TVI ~ +3TVI)
- '0’ represents ‘+2d_G7’

95th $\Delta \mathrm{E}_{0}$	$-3 T \mathrm{VI}$	-2 TVI	-1 TVI	0	+1 TVI	+2 TVI	+3TVI
-3 TVI	----						
-2 TVI	3.0	----					
-1 TVI	6.1	3.0	-----				
0	9.0	5.9	3.0	----			
+1 TVI	12.0	8.9	6.0	3.0	----		
+2 TVI	14.9	11.9	8.9	6.0	3.0	-----	
+3 TVI	17.7	14.9	11.9	9.0	6.0	3.0	-----

Results - Psychometric Testing

- Viewing booth (gti; ISO 3664-2009 compliant)
- 6 Sample sets
- 2 sessions
- 12 participants
- 6 experts
- 6 novices

Results - Psychometric Testing

1) Rank samples that fit in the image set for best CCA
2) Compare and rate sample sets for demonstrating CCA.

Results: CCA from ranking images for the best ${ }^{27}$
 corrected

image	relative CCA
Control G7 +2d	0.78
TVI-1d	0.02
GB R+1d	-0.06
GB B+1d	-0.17
S+1d	-0.25
S-1d	-0.25
GB G+1d	-0.27
GB C+1d	-0.32
TVI+1d	-0.36
GB Y+1d	-0.55
TVI-2d	-0.84
GB C+2d	-0.90
GB M+1d	-1.00
TVI+2d	-1.07
GB R+2d	-1.15
S-2d	-1.50
GB B+2d	-1.57
S+2d	-1.73
GB M+2d	-1.73
TVI-3d	-1.83
S-3d	-1.96
GB G+2d	-2.40

CCA based on ranking candidate images

Color Consistency scale based on Thurstone's Law of Comparative Judgement, Case V (Thurstone, 1927)

Results: CCA vs measured adjacent 95\% delta E00

image	relative CCA	adjacent 95\%
Control G7 +2d	0.78	0.00
TVI-1d	0.02	4.12
GB R+1d	-0.06	4.69
GB B+1d	-0.17	5.38
S+1d	-0.25	3.89
S-1d	-0.25	5.47
GB G+1d	-0.27	5.21
GB C+1d	-0.32	2.87
TVI +1 d	-0.36	4.77
GB Y+1d	-0.55	3.93
TVI-2d	-0.84	6.77
GB C+2d	-0.90	8.11
GB M+1d	-1.00	10.46
TVI $+2 d$	-1.07	5.54
GB R+2d	-1.15	7.95
S-2d	-1.50	7.16
GB B+2d	-1.57	8.57
S+2d	-1.73	7.88
GB M+2d	-1.73	9.82
TVI-3d	-1.83	10.95
S-3d	-1.96	13.80
GB G+2d	-2.40	12.92

Relative CCA vs Adjacent 95\% delta E 2000

Results: Measured 95\% delta EOO vs relative CCA

image	cummulative
Control G7 +2d	0.00
TVI-1d	4.12
GB R+1d	8.81
GB B+1d	14.19
S +1 d	18.08
S-1d	23.55
GB G+1d	28.76
GB C+1d	31.63
TVI +1 d	36.40
GB Y+1d	40.32
TVI-2d	47.09
GB C+2d	55.20
GB M+1d	65.65
TVI+2d	71.19
GB R+2d	79.15
S-2d	86.31
GB B+2d	94.87
S $+2 d$	102.76
GB M+2d	112.58
TVI-3d	123.52
S-3d	137.32
GB G+2d	150.24

Relative CCA vs cummulative sum of measured adjacent 95\% delta E00

Results: Consistency of Color Appearance from Ratings of Sets of Images

All 12 participants

LSMeans Differences Tukey HSD

| | | Least |
| :--- | :--- | ---: | ---: |
| Level | | Sq Mean |

Results: Comparison of Consistency of Color ${ }^{31}$ Appearance Ratings for Sets of Images

EXPERTS ONLY (6 participants)

LSMeans Differences Tukey HSD $\mathrm{a}=0.050 \quad \mathrm{Q}=2.88174$

Results: Comparison of Consistency of Color ${ }^{32}$ Appearance Ratings for Sets of Images

NOVICES ONLY (6 participants)

LSMeans Differences Tukey HSD $a=0.050 \quad Q=2.88174$

		Least
Level		Sq Mean

Conclusions

- A methodology for studying Consistent Color Appearance for a set of printed images was developed.
- Psychometric tests showed that CCA of image set with chroma changes appear to be more consistent than due to other attribute ($+/-\mathrm{TR},+/-\mathrm{GB}$) change.
- There is a discrepancy between experts and novices when judging CCA which may be attributed to the CCA versus image quality perceptions.
- Large range of image variations within a set can be problematic for judging CCA.
- Device-based $95^{\text {th }}$ percentile $\Delta \mathrm{E}_{00}$ is shown to be a good predictor for Consistent Color Appearance in the present experiment. The $95^{\text {th }}$ percentile $\Delta \mathrm{E}_{00} \sim 3$ were perceptible in terms of CCA evaluations.
- Additional experiments are needed to evaluate the effects of pictorial scene on CCA.

