

Town & Country Resort and Convention Center San Diego, California, United States 15 - 20 February 2014

Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images?

Tom Kimpe¹ (tom.kimpe@barco.com), Johan Rostang¹, Ali Avanaki², <u>Kathryn Espig</u>², Albert Xthona², Ioan Cocuranu³, Anil V. Parwani³, Liron Pantanowitz³

Barco Healthcare, President Kennedypark 35, Kortrijk, Belgium
 Barco Healthcare, 9125 SW Gemini Drive, Ste. 200, 97008 Beaverton, OR, USA
 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Outline

We study the impact of the display on perception and visibility of clinically relevant features in digital pathology

- Quantify the difference of display systems
- Study the difference of display systems in clinical performance

Agenda:

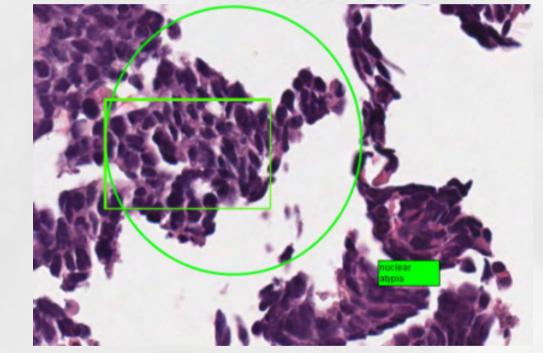
- Background
- Methods
- Results
- Conclusions and future work

BARCO

Visibly yours

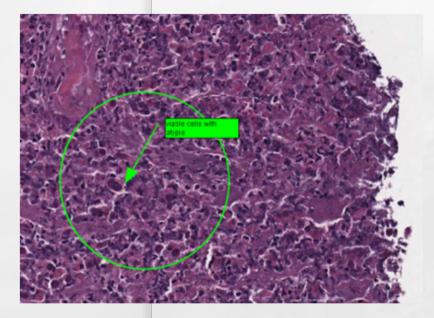
Background: Digital pathology systems

- Digital pathology systems typically consist of
 - Slide scanner
 - Processing and visualization/rendering software
 - A medical display
- The display is a very important component since it presents the final images to the pathologist


Background: State-of-the-art medical color displays

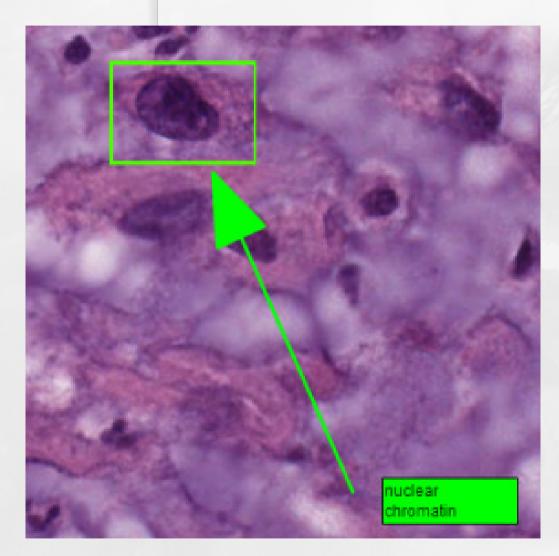
- Clinical use of color medical images is low in comparison to gray scale images
- Today's state-of-the-art medical color display systems don't yet fully address [1; 2]
 - Whitepoint variations between displays and over time
 - Color gamut variations between displays and over time
 - Color non-uniformity throughout the display
 - Optimal rendering of colors (maximizing color discrimination)
- Research is ongoing to define and standardize a color calibration target [3] for medical color displays that guarantees optimal visualization of medical color images

Methods: Clinically Relavent Features


 Four digital pathology images of different subspecialties were selected, and clinically relevant features were marked by a pathologist

muscle core biopsy involved by Ewing sarcoma (image: Core14)

Methods: Clinically Relavent Features



mediastinal lymph node biopsy with Hodgkin lymphoma (image:Core03) cytology fine needle aspirate from a lymph node showing non-Hodgkin lymphoma (image: Lymph Node 124)

Methods: Clinically Relavent Features

frozen section from a bone lesion due to metastatic urothelial carcinoma (image: FS6)

Methods: Display Systems

- Three different display systems have been compared in this study:
 - DELL 1907FP, resolution 1280 x 1024, **sRGB**, luminance 210 cd/m², contrast ratio 700:1
 - Barco MDCC-6230, resolution 3280 x 2048, DICOM GSDF calibrated, luminance 500 cd/m², contrast ratio 900:1
 - Barco MDCC-6230, resolution 3280 x 2048, CSDF calibrated, luminance 500 cd/m², contrast ratio 900:1
- The focus of the comparison was on the color behavior (rather than on other aspects such as resolution/contrast/luminance)
 - sRGB
 - DICOM GSDF (Grayscale Standard Display Function) [4]
 - a newly proposed perceptually uniform color space "CSDF" [3]

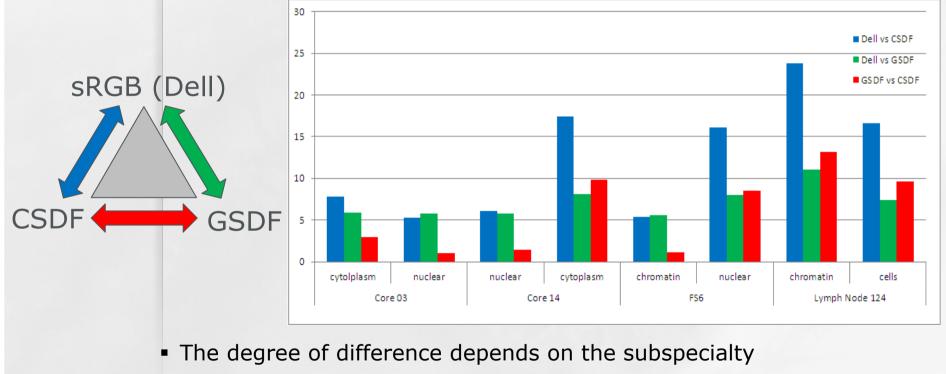
Methods: Comparison of display systems

"Do pathology images look different on different display systems?"

- analyzing perceived differences between display systems
 - calculations [5] to quantify perceived differences
 - DeltaE2000 calculations between different display
 - The same clinically relevant area
 - Visible Difference Predictor (VDP)/JNDMetrix like analysis [6; 7] to determine the location of perceived differences

Methods: Comparison of display systems

"Do differences in displays mean that there is difference in clinical performance?"

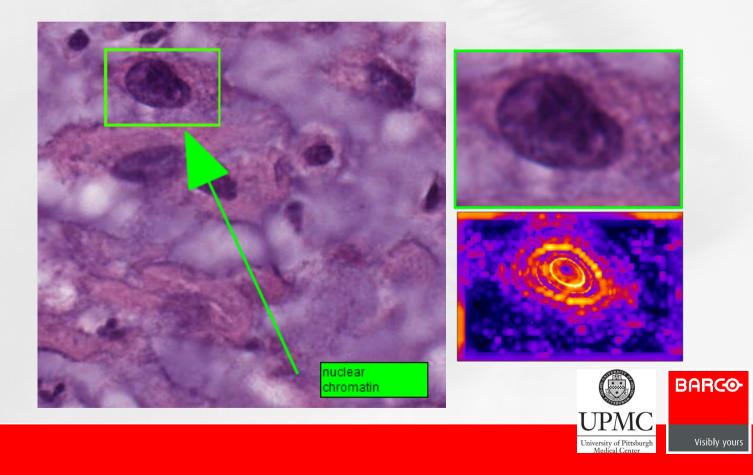

- analyzing perceived contrast of clinically relevant features
 - DeltaE2000 calculations between the background and foreground of clinically relevant areas on the same display.
 - Compare the DeltaE2000 calculations of different displays

Results: perceived differences between display systems

Intra-case difference between display systems (color spaces), measured in deltaE2000

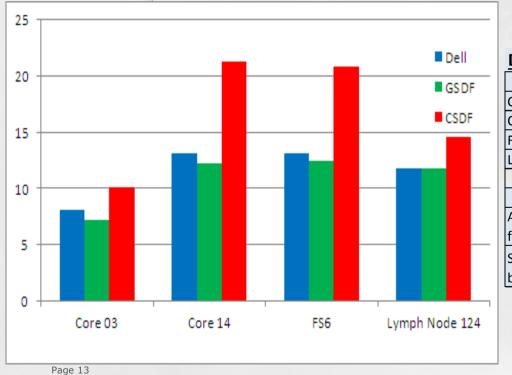
- Important remark: not ranking or quality score
- Purely quantifying how different sRGB, GSDF, CSDF images are from each other

 The choice of color target (sRGB / GSDF / CSDF) has a large impact on appearance of images


BARCO UPMC University of Pittsburgh Medical Center

Results: perceived differences between display systems

Page 12


Visible Difference Predictor (VDP) / JNDmetrix: perceived differences are located in clinically relevant areas

DICOM GSDF vs. CSDF

Results: perceived contrast of clinical relevant features

- GSDF and sRGB approximately offer the same perceived contrast
- CSDF <u>always</u> results in higher perceived contrast of clinically relevant features (on average 50% higher perceived contrast with min 25% and max 70% higher contrast)

Difference between feature foreground and background		
Image	CSDF / GSDF	CSDF / sRGB
Core03	1.399	1.244
Core14	1.74	1.617
FS6	1.674	1.589
Lymph Note 124	1.24	1.239
	CSDF / GSDF	CSDF / sRGB
Average dE2000 difference between		
feature and background	1.513	1.422
Standard deviation of dE2000 difference		
between feature and background	0.235	0.209

Conclusions

- The color space of the display has a significant impact on the perception of clinically relevant areas of digital pathology images
 - The degree of difference depends on the subspecialty
 - The choice of color target (sRGB / GSDF / CSDF)
 has a large impact on appearance of images
- A newly proposed color calibration target (CSDF) has shown to increase perceived contrast of clinically relevant features ~50%

Future work

- Confirmation of these findings in a clinical study
- Working towards standardization (mRGB) [8]

References

[1] Tom Kimpe, "Color behavior of medical display systems", Summit on Color in Medical Imaging, Coorganized by FDA and ICC, May 8-9, 2013, http://www.color.org/events/medical/Kimpe.pdf (Accessed Aug 8th 2013)

[2] Ali Avanaki, Kathryn Espig, Tom Kimpe, Albert Xthona, Cedric Marchessoux, Johan Rostang and Bastian Piepers, "Perceptual uniformity of commonly used color spaces", SPIE medical imaging 2014

[3] Tom Kimpe, Ali Avanaki, Kathryn Espig, Johan Rostang, Cédric Marchessoux, Bastian Piepers and Albert Xthona, "Requirements, desired characteristics and architectural proposal for a visualization framework for digital pathology", SPIE medical imaging 2014

[4] Samei, Ehsan, et al. "Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report." Medical physics 32 (2005): 1205.

[5] Sharma, Gaurav; Wencheng Wu, Edul N. Dalal (2005). "The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations". Color Research & Applications (Wiley Interscience) 30 (1): 21–30.

[6] Sheikh, Hamid R., and Alan C. Bovik. "Image information and visual quality." Image Processing, IEEE Transactions on 15.2 (2006): 430-444.

[7] Mantiuk, R., Daly, S. J., Myszkowski, K., & Seidel, H. P. (2005, January). Predicting visible differences in high dynamic range images: model and its calibration. In Proc. SPIE (Vol. 5666, pp. 204-214).

[8] Michael Flynn, "Medical RGB color space – mRGB", ICC Medical Image Working Group (MIWG), <u>http://www.color.org/groups/medical/mrgb_colour_space.xalter</u> (accessed Feb 13th 2014).

Town & Country Resort and Convention Center San Diego, California, United States 15 - 20 February 2014

