ICC DEVCON 2020

A BRDF Implementation Using iccMAX

bу

Tanzima Habib

NTNU, Gjøvik, Norway

<u>syedath@studntnu.no</u>

The Colo Labo

The Norwegian
Colour and Visual Computing
Laboratory
NTNL

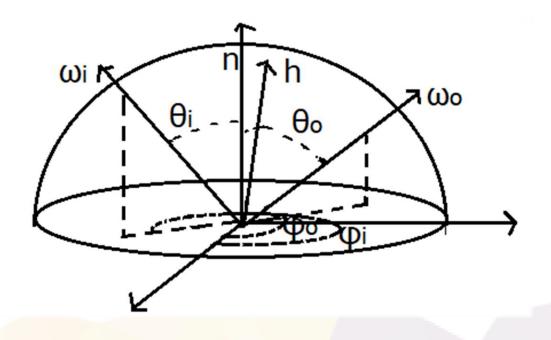
THE FUTURE OF COLOR MANAGEMENT

https://www.appears-itn.eu/

Appears

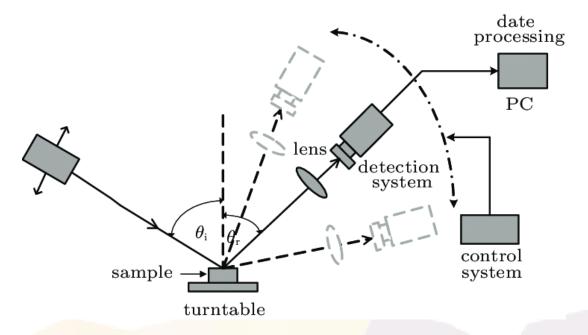
European Advanced Research Schoo

OUTLINE



INTRODUCTION

- Reproducing accurate appearance of a scene has always been the goal of colour imaging or computer graphics.
- Optical properties that contribute to an object's appearance are:
 colour, gloss, translucency and texture
- Bidirectional Reflection Distribution function (BRDF) is widely used for appearance modelling of materials.
- Appearance reproduction in colour management frameworks



- Represents surface/material reflection characteristics
- Position of the surface
- Direction of incident light
- Direction of reflection
- Amount of light that is reflected

BRDF Measurements

- Samples : Cyan and magenta
- wax-based inks
- matte coated white paper
- OCE ColorWave 600PP
- The radiance factor of these two samples were measured using a Murakami Gonio-Spectrophotometer GCMS
- Incidence angles (θi): 30°, 45° and 60°
- Reflection angles (θr): -80° to 80° in intervals of 5°

Kai, W., Jing-Ping, Z., Hong, L. and Xun, H., 2016. Model of bidirectional reflectance distribution function for metallic materials. *Chinese Physics B*, *25*(9), pp.94201-094201.

Analytical models :

Fits measured data and estimate reflectance data

Eg: Ward BRDF model

Phong Model

Physical models:

Use optics and physics to define the function using micro facets Eg: Cook Torrance Model Ward BRDF $I_{p}(\theta_{i};\theta_{r}) = \begin{bmatrix} I_{p_{X}} \\ I_{p_{Y}} \\ I_{p_{Z}} \end{bmatrix} = I_{i}\cos\theta_{i} \left(\begin{bmatrix} R_{d_{X}} \\ R_{d_{Y}} \\ R_{d_{Z}} \end{bmatrix} \frac{1}{\pi} + \frac{k_{S}}{\sqrt{\cos\theta_{i}\cos\theta_{r}}} \frac{e^{[-\tan^{2}\delta/m^{2}]}}{4\pi m^{2}} \right)$

Sole, A., Farup, I., Nussbaum, P. and Tominaga, S., 2018. Evaluating an image-based bidirectional reflectance distribution function measurement setup. Applied Optics, 57(8), pp.1918-1928.

BRDF Model Optimization

Peter Peers : 'There is more to win by improving the fit than improving the BRDF model.'

- A major part of BRDF rendering accuracy comes from choosing the right optimization method.
- Should balance the error generated in the diffuse component to error generated in rendering the specular peak
- Better metric to fit the model.
- Adaptive metric

[Bieron, J. and Peers, P., 2020, July. An adaptive brdf fitting metric. In Computer Graphics Forum (Vol. 39, No. 4, pp. 59-74).]

BRDF Model Optimization

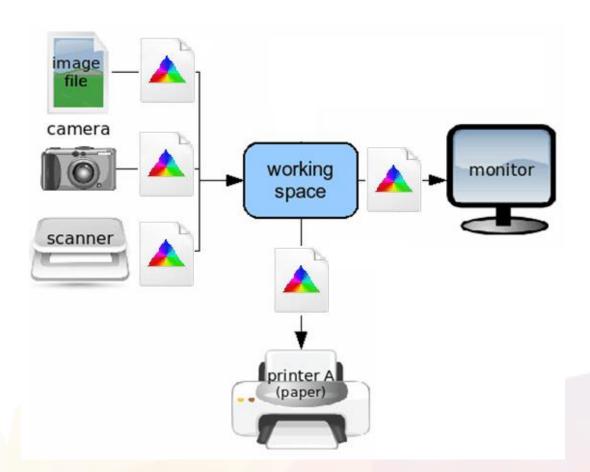
- Optimized using the Nelder-Mead downhill simplex
- ΔE_{00} colour difference used as the objective function

BRDF Parameters

- + $K_{s'} R_{dx'} R_{dY}$ and R_{dz} and m
- Specular constant
- Diffuse component
- Specular lobe

Sole, A., Farup, I., Nussbaum, P. and Tominaga, S., 2018. Evaluating an image-based bidirectional reflectance distribution function measurement setup. Applied Optics, 57(8), pp.1918-1928.

ICC DevCon 2020


iccMAX

- The ability to use spectral data
- The ability to use different illuminants and observers without the need for chromatic adaptation
- The ability to encode complex transforms, including functional transforms, in the profile
- More support for total colour appearance, including texture and gloss including BRDF

BRDF IN COLOUR MANAGEMENT

- ICC.2 (iccMAX) provides a number of options for BRDF implementation
- BRDFStruct tags and external renderer
- BRDF transforms defined by the profile creator
- We use a multiplex connection space (MCS) for BRDF encoding

CALCULATOR ELEMENT PROGRAMMING

- ICC.2 (iccMAX) provides calculator element programming
- Stack based programming
- XML representation of iccMAX profiles

Operators	2	3	add	11	mul	1	add
Steels		3		11		1	
Stack	2	2	5	5	55	55	56

```
<MultiProcessElements InputChannels="3" OutputChannels="3">
```

iccMAX BRDF WORKFLOW

- Input TIFF file with BRDF coefficients
- An MID profile to read input and pass to the MCS
- An MVIS profile to use MCS as input and apply the encoded BRF model
- The incidence and viewing angles supplied at runtime
- Output TIFF containing XYZ values at a new geometry

ICC DevCon 2020

Implementing directional reflectance in a colour managed workflow. T Habib, P. Green, A. Sole. LIM2020

TANZIMA HABIB

Device Input Channels

MID Profile **MVIS Profile** Header Header MCS Subset: No MCS Subset: No {Device } MCS Channels { MCS PCS channels MCS PCS 7 Multiplex Type Calculator Element Array Tag {Channels} {Name} input channels : "MX" Channel 0 env(Incident) : "MY" Display env(Reflection) Channel 2 : "MZ" Ward Model Profile : "m" Channel 3 output channels Channel 4 : "ks" Multiplex Type Array Tag {Channels} {Name} Channel 0 : "MX" **RGB** Channels : "MZ" : "MY" Channel 2 : "m" Channel 3 Channel 4 : "ks" Multiplex Default Value Tag (Value) {Channels} Channel 1 Channel 2 Channel 3 Channel 4 :

MATERIAL IDENTIFICATION

• MID profile reads these channels from the TIFF file and passes them to the MCS.

```
<multiProcessElementType>

<TagSignature>A2MO</TagSignature>

<MultiProcessElements InputChannels="5" OutputChannels="5">

<CalculatorElement InputChannels="5" OutputChannels="5">

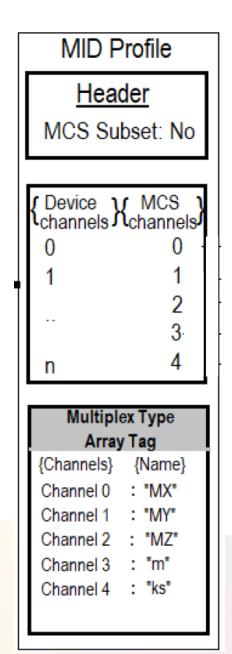
<SubElements/>

<MainFunction>

{

in(0,5)

out(0,5)

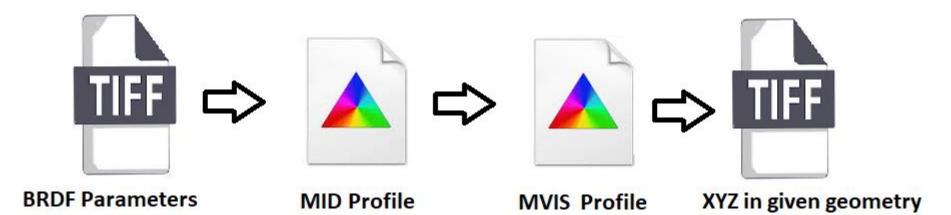

}

</MainFunction>

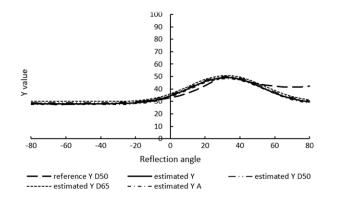
</CalculatorElement>

</MultiProcessElements>

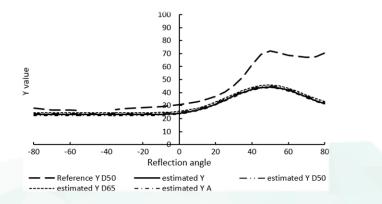
</multiProcessElementType>
```

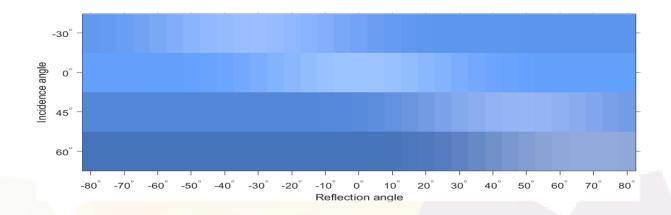


MATERIAL VISUALIZATION

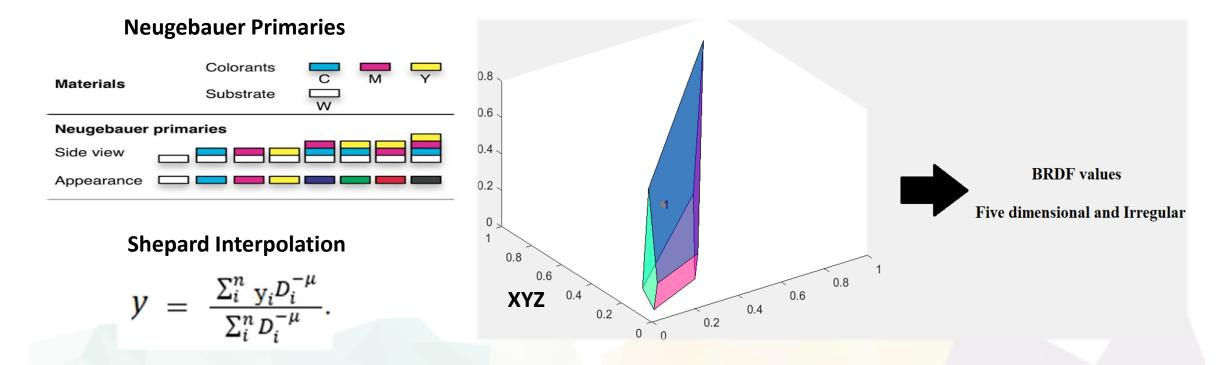
- MVIS profile then takes the channels from the MCS and applies the BRDF ward model using the parameters pixelwise
- A new TIFF file is created with the estimated XYZ values for the given incidence and viewing angles


MVIS Pro	ofile
<u>Heade</u>	-
MCS Subs	et: No
{ MCS { channels } { channels	PCS
	X
1	Y
2	Z
-3	
4	
Multiplex T Array Ta	
{Channels} {N	-
Channel 0 :	
Channel 1 :	
Channel 2 : Channel 3 :	
Channel 4 :	

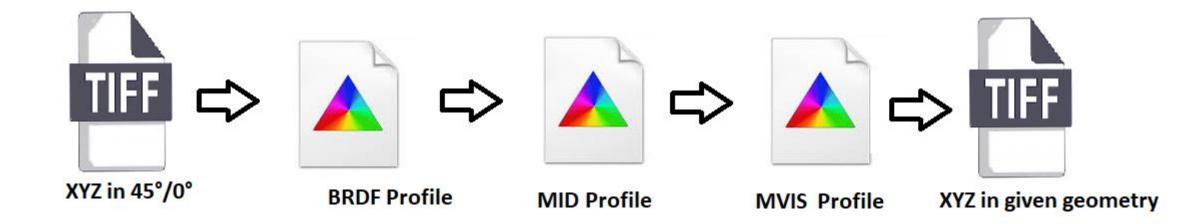
t
lt
}


APPLICATION





ICC DevCon 2020


BRDF INTERPOLATION METHOD

Westland, S., Ripamonti, C. and Cheung, V., 2012. *Computational colour science using MATLAB*. John Wiley & Sons.

ICC DevCon 2020

Application

CONCLUSIONS

✓ Using MCS an efficient rendering framework can be achieved.

✓ Framework should be tested on other BRDF models.

- ✓ This lays the ground to develop a more robust framework that can map input XYZ to BRDF coefficients and through MCS to XYZ in another geometry.
- ✓ For this the Interpolation Method can be used
- ✓Normal map can be used to further decode light and viewing directions and make worflow model robust

Limitations:

Cannot handle spatial locations

Thank You

ICC DevCon 2020