N-Color Work at Onyx Graphics

Max Derhak(PhD)
Principal Scientist
Onyx Graphics, Inc.
Outline

• Brief Introduction
• Ways of thinking about N-Color
• N-Color challenges
• N-Color processing and profiling pipelines
• Future opportunities with N-Color
A little bit about Onyx Graphics, Inc.

• Started in December of 1989
• Develops RIP Software for driving wide/grand format printing devices
• Support for
 • Over 2600 print devices
 • Thousands and thousands of combinations of Media+Colorant
• Technologies and applications
 • Aqueous
 • Solvent
 • Latex
 • UV Cured
 • Toner
 • Ceramic glazes
 • Textile Dyes
• Support for lots of different colorants on lots of different media
Why N-Color?

• Extending the gamut of colors that can be reproduced
• Better named color matching (spot emulation)
• Specialty applications
 • White for printing on film/colored media
 • Multi-Layer Printing
 • Draw attention and differentiate
 • Metallics
 • Fluorescence
• Provide competitive advantage
Thinking about N-Color

• At a printer device level
 • N-Color is realized by the ability to have output channels that are independently addressed and controlled

• At a software level
 • N-Color is separated into categories:
 • Process Colors
 • Have implicit color meaning and participate in color management
 • Specialty (spot) colors
 • White, metallics, gloss
 • Directly controlled by the image or document
 • Or job color tools are used to add spot layers
 • Concentrations / dilutions
 • Used to improve effective resolution
 • Can apply to either process or spot channels
Onyx Process Color Spaces

• Internal native numeric conversions can be made between supported process color spaces
• This allows for flexibility in how color management is performed
Establishing relationships between device output channels and software process channels

- Ink Configurations involve
 - Associating ink concentrations with processing channels
 - Associating software processing channels to printer output channels
Profiling process with N-Color

• First step of profiling process uses automated process to define ink concentration separations as processing channels
• Remaining steps only deal with process and spot color channels
• Note: Special care needs to be taken for spot channels that cannot be measured
Challenges of N-Color

• Requires new and wider pathways to work with color pixels
• More information is needed to keep track of things
 • Number of channels is not sufficient
• PDF limitations
 • Source can generally be Grayscale, RGB, or CMYK
 • Complicates transparency processing
• Exponential increase of color combinations (see example)
 • Complicates swatches and n-dimensional look-up tables
• Complicates ink separation and color conversion (see example)
N-Color and PDF

• Problems can occur when using an N-Color output device with PDF
 • Transparency rendering in the device N-Color space is ill defined resulting in undesirable output

• Two stage processing can be used to addresses this problem
 • First RIP to a large gamut intermediate CMYK space (Simulation/Proofing) profile for proper rendering
 • Then convert to N-Color using color management

ICC Profile Setup

Source Profile Intermediate Profile Intermediate Profile N-Color Profile
N-Color Dimensional Visualization

• The following slides show the exponential growth of a visual lookup table (LUT) as more dimensions are added
 • The contents of the LUT is visually represented with actual colors for each LUT entry
 • RGB colors are shown rather than Lab, XYZ or spectral values
• Only four steps are represented for each input channel dimension (0%, 33%, 66%, and 100%)
Example of Exponential Table Growth

- Colors: C
- Sampling: 0, 33, 66, 100%
- LUT Size: 4
Example of Exponential Table Growth

- Colors: CM
- Sampling: 0, 33, 66, 100%
- LUT Size 4x4 = 16
Example of Exponential Table Growth

- Colors: CMY
- Sampling: 0, 33, 66, 100%
- LUT Size 4x4x4=64
Example of Exponential Table Growth

- Colors: CMYO
- Sampling: 0, 33, 66, 100%
- LUT Size: 4x4x4x4 = 256
Example of Exponential Table Growth

- Colors: CMYOG
- Sampling: 0, 33, 66, 100%
- LUT Size: $4 \times 4 \times 4 \times 4 \times 4 = 1024$
Example of Exponential Table Growth

- Colors: CMYOGK
- Sampling: 0, 33, 66, 100%
- LUT Size: $4 \times 4 \times 4 \times 4 \times 4 = 4096$
Exponential Growth of N-dimensional LUTs

- In general terms, the number of entry points (E) in a look-up table (LUT) is defined in terms of the number of channels (N) and the number of sampling steps (S) by the exponential equation:

\[E = S^N \]

- E gets **really big, really fast** for each increase in N.
Multi-dimensional aspects of hue separation

Consider going from Yellow to Magenta
Multi-dimensional aspects of hue separation

Consider going from Yellow to Magenta

Consider going from Yellow to Magenta including Orange
Swatch Generation

- Swatch format selects between N-Color and Extended CMYK profiling approaches

N-Color Profile Generation Settings

- Can use pre-defined ink separation (smooth) or dynamic separation (to maximize gamut size)
N-Color Output Processing Pipelines

CMYK + N-Color Separation
- Uses standard CMYK profiling mechanisms
 - Indicated by using CMYK swatch
- Separate custom CMYK to N-Color separation indicated in profile metadata
- Requires a custom CMM
 - Not an open, vendor neutral, cross platform solution

Direct N-Color
- Requires N-Color Swatch
 - Indicated by using N-color swatch
 - Less sampling of full color space
- Separation to N-color is part of ICC profile
 - Larger Profile
- Uses standard ICC technology
N-Color Input Processing Pipelines

CMYK + N-Color Separation
- Uses standard CMYK profiling mechanisms
 - Indicated by using CMYK swatch
- Separate custom N-Color to CMYK color conversion
 - May not represent actual colors
- Requires a custom CMM
 - Not an open, vendor neutral, cross platform solution

Direct N-Color
- Table grows exponentially relative to N
 - Represents actual colors
 - Less sampling of full color space
 - Indicated by using N-color swatch
 - Larger profile or less accurate profile
- Uses standard ICC technology

ICC DevCon 2020
Current Use of iccMAX by Onyx Graphics

- Transforms are encoded in iccMAX using the MulitProcessElements tag type which provides a programmable transform mechanism.
- Currently Onyx uses iccMAX to change the LUT color space to improve interpolation accuracy of output Tables.
The Future of N-Color with iccMAX

- Options for determining output values from N-dimensional input values include:
 - Algorithmic:
 - Conditionally selecting and applying lower dimensional LUTs with higher sampling
 - Example: CMYK-3DLUTs.icc
 - Computational:
 - Directly encoding device/colorant math model
 - Example: ElevenChanKubelkaMunk.icc
 - Directly encoding of overprinting math model
 - Example: 17ChanWithSpots-MVIS.icc

- Note: The above examples can be found in RefIccMAX
Thank you for your kind attention!

Questions?