
 1

ICC Votable Proposal Submission

Floating-Point Device Encoding Range

Proposers: Manish Kulkarni, Adobe Systems; Max Derhak, ONYX Graphics
Date: June 16, 2006
Proposal Version: 1.1

1. Introduction

Digital Motion Picture Workflows require editing of DPX files (DPX files contain 10-bit Printing Density values
obtained by scanning Original Camera Negative film). Special Effects (e.g. dinosaur breathing blue fire) are
added to DPX files during the editing process. In order to make the Special Effects appear realistic, editing is
performed in a Scene-Referred RGB space (strictly speaking, the space may be focal-plane-referred since flare
and filtration may not be taken into account).

A typical DMP Editing workflow using ICC Profiles is as follows:

Of interest for this proposal is the path from DPX In to DPX Out, highlighted above in red.

The Camera Negative Profile enables the conversion of DPX values to Scene-Referred XYZ values. The
Working Space Profile (which is RGB) enables the conversion of Scene-Referred XYZ values to Scene-
Referred RGB values. Editing is performed in the Scene-Referred RGB space. The Working Space Profile and
Camera Negative Profile enable the conversion of Working Space RGB values back to DPX for saving.

An example of the Camera Negative Profile is the Adobe “DPX Scene - Standard Camera Film” Profile. See
http://www.color.org/membersonly/Notes_DPX_Scene-StandardCameraFilm.pdf and
http://www.color.org/membersonly/DPXSceneStandard_ICC.icc.

An example of the RGB Working Space is a Color Space based on the ITU-R BT.709.3 chromaticities and non-
linearity.

1.1 Problem Statement

A key requirement for DPX Editing is that unedited content be unchanged in the workflow. It is not possible to
satisfy this requirement with ICC v4.2.0 Profiles. The reasons are discussed below in detail.

1.1.1 Limited Precision in ICC Profiles

The Camera Negative Profile is used to convert DPX values to Scene XYZ values. During this conversion, a
1D Curve is applied to each input DPX value. The TRC is shown below:

 2

DPX Scene Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5
2

1
0

4

1
5

6

2
0

8

2
6

0

3
1

2

3
6

4

4
1

6

4
6

8

5
2

0

5
7

2

6
2

4

6
7

6

7
2

8

7
8

0

8
3

2

8
8

4

9
3

6

9
8

8

DPX Count

N
o

r
m

a
li

z
e

d

V

a
lu

e
s

Some of the values of the curve are shown in the table below:

10-bit
DPX Count

Curve
Values

Normalized
Values

16-bit
Values

0 0.001855 2.44594E-05 2

1 0.001876 2.47420E-05 2

2 0.001898 2.50279E-05 2

… … … …

37 0.002837 3.74154E-05 2

38 0.002870 3.78477E-05 2

39 0.002903 3.82851E-05 3

40 0.002937 3.87274E-05 3

… … … …

684 0.895955 0.0118158 774

685 0.902699 0.0119048 780

686 0.909493 0.0119944 786

… … … …

1021 58.629983 0.7732119 50672

1022 66.676150 0.8793247 57627

1023 75.826544 1.0000000 65535

 3

The curve in this example has 1024 points, one point corresponding to each input 10-bit DPX count. What must
be encoded in the ICC Profile are the values in the “Normalized Values” column. Since ICC Profiles only
support up to 16-bit precision, the values must be converted to 16-bit. It is obvious from the “16-bit values”
column that doing so results in severe quantization. This quantization becomes obvious when the curve is
graphed on a log scale, shown below:

DPX Scene Curve

1

10

100

1000

10000

100000

0

5
2

1
0

4

1
5

6

2
0

8

2
6

0

3
1

2

3
6

4

4
1

6

4
6

8

5
2

0

5
7

2

6
2

4

6
7

6

7
2

8

7
8

0

8
3

2

8
8

4

9
3

6

9
8

8

DPX Count

1
6
-b

it
 V

a
lu

e
s
 (

lo
g

)

One way to work around this problem is to apply a gamma-curve to the Normalized Values, and use two
consecutive curves in the profile:

Curve 1: Sampled Curve with Applied Gamma, limited to 16-bits
Curve 2: Parametric Curve with Inverse Gamma

This method was used in the Adobe DPX Scene Profile. The model used in that case was:
 Curve Matrix
which was split up as:
 Curve1 Curve2 Matrix
and encoded in the mAB-type A2B1 tag as:
 A (Curve1) CLUT (Identity) M (Curve2) Matrix B (Identity)

A better model, however, for reconstructing scene colorimetry would be:
 Matrix1 Curve Matrix2
This enables the modeling of film channel cross-talk.

One way to encode this in the mAB-type A2B1 tag is:
 A (Identity) 2x2x2 CLUT (Matrix1) M (Curve) Matrix (Matrix2) B (Identity)

Now it is no longer possible to split up the Curve into Curve1 and Curve2 because there are insufficient
processing elements.

Another problem related to precision in the ICC Profile is the precision of the Matrix element. In current ICC
Profiles, the Matrix encoding is s15.16. It has been found that it is not possible to encode a Matrix and its
Inverse Matrix with sufficient precision to allow DPX-count round-tripping. The inaccuracies resulting from the

 4

encoding of the Inverse Matrix can cause round-trip errors of up to 11 DPX counts, which is clearly
unacceptable.

One way to solve these problem is by having support for floating-point data in ICC Profiles.

1.1.2 Device-side encoding is bounded

In current ICC profiles the device encoding range must have definite bounds. The device encoding minimum is
mapped to zero in the profile and the device encoding maximum, corresponding to the device maximum white,
or in the case of a capture device the device saturation, is mapped to 1. The mapping of the measured
colorimetry of the device white to 1 is accomplished using linear XYZ scaling. The media white point tag is then
used to undo the scaling of the device white to produce "ICC-absolute" colorimetry values which are relative to
the assumed adapted white.

The device encoding bounds do not limit the dynamic range that can be supported because there are no
restrictions on the relation between the device encoding minimum and "zero photon" black, or between the
device encoding maximum and the assumed adapted white. However, there is increasing interest in the use of
floating-point color encodings, for exchange and as working spaces. Practically, such encodings can be
thought of as unbounded, and it is therefore impossible to support them using current ICC profiles.

1.1.3 PCS encoding range is limited to [0,2)

The current ICC PCS encoding of XYZ values is limited to the range of [0,2). Since, in this encoding, the device
encoding maximum is encoded as 1, it is unlikely that any device values will have corresponding D50
chromatically adapted XYZ values above 2. However, it is possible for this to occur in some unusual
circumstances, for example in situations of extreme fluorescence where the media white is much darker than
some saturated colors. The media white is defined to be the lightest neutral color that a capture device can
capture, or an output device can produce.

It is also possible that some device values may have corresponding XYZ values that are negative. Such values
can result from digital camera color analysis matrices, or chromatic adaptation transforms applied to extremely
saturated blue colors. In most cases, it is acceptable to clip negative XYZ values to zero as such values do not
correspond to real colors. However in some cases this may be unacceptable, for example if perfect round-
tripping is desired.

1.2 Goals of the Solution

The primary goals of the solution are as follows:

• Solve the problems described in the previous section. This will enable the use of ICC Profiles in DMP
workflows. This proposal introduces new features in ICC Profiles to solve the problems.

• Provide complete backwards compatibility with the existing ICC Profile Specification (Profile Version 4.2.0).
This will enable us to make a Minor Revision to the current specification, and will have no impact on
existing products and workflows that do not require the new features.

A secondary goal of the solution is to lay the groundwork for the support of additional workflows that are
currently not possible with ICC Profiles.

1.3 Overview of the Solution

The proposal introduces a new set of optional Color Transform tags D2Bx and B2Dx. The letter “D” refers to
Device Space (similar to the “A” space in the current A2Bx and B2Ax tags), and the letter “B” refers to the PCS
(identical to the “B” space in the current A2Bx and B2Ax tags). The suffix “x” can be 0, 1, 2 or 3, which
indicates the Rendering Intent, identical to the suffix in the current A2Bx and B2Ax tags, with the suffix ‘3’
representing the ICC-Absolute transform in the new tags. Profile Creators that include the D2Bx and B2Dx tags
also need to include the A2Bx and B2Ax tags. The D2Bx and B2Dx transforms are intended to produce
equivalent results to the corresponding A2Bx and B2Ax transforms, excepting the increased precision and
extended range. CMMs that support floating-point encoding range can use the D2Bx and B2Dx tags instead of
the A2Bx and B2Ax tags. Since the new tags are optional, CMMs are not required to support these tags.

 5

The Device Encoding Range in the new Color Transform tags is not limited to the [0,1] range, but instead
encompasses the values represented by 32-bit IEEE 754 floating-point numbers (excluding denormalised
numbers, infinities and ‘NaN’ values). The Color Transform tags contain several processing elements which
have a 32-bit IEEE 754 floating-point range and domain.

2. The acceptance of this proposal will result in a:

minor revision of Specification ICC.1:2004-10

3. Nature of the proposal:

This is a new technical addition to the specification.

New optional tags BToD0Tag, BToD1Tag, BToD2Tag, BToD3Tag, DToB0Tag, DToB1Tag, DToB2Tag and
DToB3Tag are defined, that use a new tag type multiProcessElementsType.

4. Votable Proposal

• Add a Normative Reference to Clause 3:

IEEE 754-1985, Standard for Binary Floating-Point Arithmetic

• New Clause 5.x float32Number

Single-precision 32-bit IEEE 754 floating-point number, excluding denormalised numbers, infinities, and
Not a Number ‘NaN’ values.

NOTE 1: A 32-bit IEEE 754 floating-point number has an 8-bit exponent and a 23-bit mantissa.

NOTE 2: Although denormalised numbers, infinities and NaN values are not stored in the ICC Profile, such
values may occur as a result of CMM computations.

• New Clause 5.x positionNumber

Positions of some data elements are indicated using a position offset with the data element’s size. This
data type allows this information to be stored as a single entity.

Table A – positionNumber Encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 Offset to Data Element uInt32Number

4..7 4 Size of Data element in Bytes uInt32Number

• Replace Header 6 with

6 Profile Connection Space, Rendering Intents and Device Encoding

• Replace Paragraph 2 of Clause 6.2.3 with the following:

The D2B3 and B2D3 tags contain separate transforms for the ICC-absolute colorimetric intent. This allows
for an absolute expression of colorimetric data, limited only by the range of float32Number values. The
mediaWhitePointTag is NOT used in processing D2B3 and B2D3 tags.

When D2B3 and B2D3 tags are not present (or not used), profiles do not contain a separate transform for
the ICC-absolute colorimetric intent. When this intent is needed, it shall be generated, as described in
6.3.2, using the mediaWhitePointTag, which specifies the CIE 1931 XYZ tristimulus values of the white
point of the actual medium, as represented in the PCS. In this way, ICC-absolute colorimetric rendering
may be obtained by using the media-relative colorimetric intent transformations (A2B1, B2A1) for the

 6

source and destination profiles and scaling the PCS values by the ratio of the destination profile
mediaWhitePointTag to the source profile mediaWhitePointTag (see Annex D for more information).

• Replace Paragraph 1 of Clause 6.3.4.1 with the following:

The colorimetric data defined in the above clauses shall be specified either as CIEXYZ or CIELAB data.
When specified as CIEXYZ data it shall be encoded using 16 bits/component while when specified as
CIELAB data it shall be encoded as either 8 or 16 bits/component. Additionally, within the context of DToBx
and BToDx tags CIEXYZ or CIELAB PCS data shall be encoded using float32Number values that directly
express CIEXYZ or CIELAB PCS colorimetry.

• Add the following to the end of Clause 6.3.4.1 (after Note 2):

NOTE 3 When converting from float32Number-based to integer-based encoding, component-wise clipping
shall occur if the floating-point value is outside the range that can be encoded as integers.

• Replace text in Clause 6.3.4.2 with the following:

For the float32Number-based PCS encodings the actual CIEXYZ or CIELAB values are directly encoded.
For the integer based CIEXYZ encoding, each component (X, Y, and Z) is encoded as a
u1Fixed15Number. The relationship between CIEXYZ encodings is shown in table in Table B.

Table B – CIEXYZ X, Y or Z encoding

Value(X, Y, or Z) u1Fixed15Nubmer
Encoding

float32Number
Encoding

0,0 0000h 0,0

1,0 8000h 1,0

1,0 + (32767,0 / 32768,0) FFFFh 1,999969482421875

NOTE: 1,999969482421875 is 1,0 + 32767,0 / 32768,0 expressed as a float32Number.

For the CIELAB PCS encodings, the L* values have a different encoding than the a* and b* values. The L*
encoding is shown in table 8.

Table 8 – CIELAB L* encoding

Value(L*) 8-bit
Encoding

16-bit
Encoding

float32Number
Encoding

0,0 00h 0000h 0,0

100,0 FFh FFFFh 100,0

The a* and b* encoding is shown in table 9.

Table 9 – CIELAB a* or b* encoding

Value(a*or b*) 8-bit
Encoding

16-bit
Encoding

float32Number
Encoding

-128,0 00h 0000h -128,0

0,0 80h 8080h 0,0

127,0 FFh FFFFh 127,0

 7

NOTE 1 The integer encoding is not "two’s complement" encoding, but a linear scaling after an offset of 128. This
encoding was chosen to prevent discontinuities in CLUTs when going from negative to positive values.

NOTE 2 It is possible to convert between the 8-bit and 16-bit encodings by multiplying or dividing by 257. (See A.4.)

NOTE 3 Both the lut16Type and the namedColor2Type tag types (and ONLY those tag types) use a legacy 16 bit
encoding of L*, a* and b* which is retained for backwards compatibility with an earlier profile version (version 2). To

avoid confusion this encoding is specified in clause 10.8 “Lut16Type”..

• Replace text in Clause 6.4 with the following text:

Conversions between the CIEXYZ and CIELAB encodings shall use the equations specified in CIE 15.2
(see A.3 in Annex A).

When converting to integer-based encodings:

Any colours in the PCS XYZ encoding range that are outside of the PCS LAB encoding range shall be
clipped on a per-component basis to the outside limits of the range of PCS LAB when transforming from
XYZ into LAB. Conversely, any colours that occur in the PCS LAB encoding range that are outside of the
encoding range of PCS XYZ shall be clipped on a per-component basis to the PCS XYZ range when
transforming from LAB into XYZ.

When converting to float32Number-based encodings:

Conversion of PCS XYZ to PCS LAB is performed and encoded using the float32Number encoding of PCS
values as defined in section 6.3.4.2. Conversely, conversion of PCS XYZ to PCS LAB is performed and
encoded using the float32Number encoding of PCS values as defined in section 6.3.4.2. No clipping is
performed in either case.

NOTE: In order to calculate LAB values from negative XYZ values, the straight line portion of the LAB color
component transfer function below 0,008856 shall be extended so that its domain goes to negative infinity.

• New Clause: 6.5 Device Encoding

The specification of device value encoding is determined by the device. Normally, device values in the
range of 0,0 to 1,0 are encoded using a 0 to 255 (FFh) range when using 8 bits and are encoded using a 0
to 65535 (FFFFh) range when using 16 bits. When encoding using float32Number values in DToBx and
BToDx tags, device values may be outside the 0,0 to 1,0.

• Add to the end of Clause 8.3.2 “N-component LUT-based input profiles”

Optional DToB0Tag (see 9.2.x), DToB1Tag (see 9.2.x), DToB2Tag (see 9.2.x), DToB3Tag (see 9.2.x),
BToD0Tag (see 9.2.x), BToD1Tag (see 9.2.x), BToD2Tag (see 9.2.x), BToD3Tag (see 9.2.x) may also be
included.

• Add to the end of Clause 8.4.2 “N-component LUT-based display profiles”

Optional DToB0Tag (see 9.2.x), DToB1Tag (see 9.2.x), DToB2Tag (see 9.2.x), DToB3Tag (see 9.2.x),
BToD0Tag (see 9.2.x), BToD1Tag (see 9.2.x), BToD2Tag (see 9.2.x), BToD3Tag (see 9.2.x) may also be
included.

• Add to the end of Clause 8.5.2 “N-component LUT-based output profiles”

Optional DToB0Tag (see 9.2.x), DToB1Tag (see 9.2.x), DToB2Tag (see 9.2.x), DToB3Tag (see 9.2.x),
BToD0Tag (see 9.2.x), BToD1Tag (see 9.2.x), BToD2Tag (see 9.2.x), BToD3Tag (see 9.2.x) may also be
included.

• Add to the end of Clause 8.6 “DeviceLink profile” (just before the NOTE)

A device link profile can optionally contain a DToB0Tag (see 9.2.x).

• Add to the end of Clause 8.7 “ColorSpace conversion profile”

 8

Optional DToB0Tag (see 9.2.x), DToB1Tag (see 9.2.x), DToB2Tag (see 9.2.x), DToB3Tag (see 9.2.x),
BToD0Tag (see 9.2.x), BToD1Tag (see 9.2.x), BToD2Tag (see 9.2.x), BToD3Tag (see 9.2.x) may also be
included.

• Add to the end of Clause 8.8 “Abstract profile”

An Abstract profile can optionally contain a DToB0Tag (see 9.2.x).

• Replace text in Clause 8.10 “Priority of tag usage” with the following text:

There are several methods of colour transformation that can function within a single CMM. If data for more
than one method are included in the same profile, the following selection algorithm shall be used by the
software implementation.

For Input, Display, Output, or ColorSpace profile types, the priority of the tag usage for each rendering intent
shall be:

1. BToD0Tag, BToD1Tag, BToD2Tag, BToD3Tag, DToB0Tag, DToB1Tag, DToB2Tag, or DToB3Tag
designated for the rendering intent

2. BToA0Tag, BToA1Tag, BToA2Tag, AToB0Tag, AToB1Tag, or AToB2Tag designated for the rendering
intent

3. BToA0Tag or AToB0Tag

4. TRCs (redTRCTag, greenTRCTag, blueTRCTag, or grayTRCTag) and colorants (redMatrixColumnTag,
greenMatrixColumnTag, blueMatrixColumnTag)

For DeviceLink or Abstract profile types, the priority of the tag usage shall be:

1. DToB0Tag

2. AToB0Tag

For all profile types, the available valid tag with the lowest priority number defines the transform. If the
CMM does not need or does not support the BToDxTags and DToBxTags, or if the CMM does not
understand a particular processing element in the BToDxTags or DToBxTags, the B2Dx and D2Bx tags
shall not be used by such a CMM.

• Clause 9.1: Add new paragraph at the end

The DToBxTags and BToDxTags represent colour transforms that operate on a range of values encoded
by 32-bit IEEE 754 floating-point numbers. The processing model is described in detail in 10.x. These tags
are optional for all profile classes.

The “D” space represents a 32-bit IEEE 754 floating-point-encoded Device Space. In this space, negative
as well as positive values (including values greater than 1,0) are allowed when such values are supported
by the device.

The “B” space represents the PCS, identical to the “B” space in the AToBxTags and BToAxTags. The
encoding range of the “B” space in the DToBxTags and BToDxTags is defined in section 6.3.4.2,as is the
case with the “B” space in AToBxTags and BToAxTags. (See section 6.3).

The DToB3 and BToD3 tags allow the ability to directly encode the absolute rendering intent in a profile.
The PCS for DToB3 and BToD3 represents ICC-absolute colorimetry with the values encoded as
float32Number. The mediaWhitePoint tag is NOT used in the calculation of ICC-Absolute colorimetry from
the data in the DToB3 and BToD3 tags.

• New Clause: 9.2.x BToD0Tag

Tag signature ‘B2D0’ (42324430h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from PCS to Device. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the BToA0Tag. As with the BToA0Tag, it

 9

defines a transform to achieve a perceptual rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x BToD1Tag

Tag signature ‘B2D1’ (42324431h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from PCS to Device. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the BToA1Tag. As with the BToA1Tag, it
defines a transform to achieve a colorimetric rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x BToD2Tag

Tag signature ‘B2D2’ (42324432h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from PCS to Device. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the BToA2Tag. As with the BToA2Tag, it
defines a transform to achieve a saturation rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x BToD3Tag

Tag signature ‘B2D3’ (42324433h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from PCS to Device. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the BToA1Tag and associated Absolute
Rendering Intent processing. As with the BToA1Tag and associated Absolute Rendering Intent processing,
it defines a transform to achieve an absolute rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x DToB0Tag

Tag signature ‘D2B0’ (44324230h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from Device to PCS. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the AToB0Tag. As with the AToB0Tag, it
defines a transform to achieve a perceptual rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x DToB1Tag

Tag signature ‘D2B1’ (44324231h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from Device to PCS. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the AToB1Tag. As with the AToB1Tag, it
defines a transform to achieve a colorimetric rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x DToB2Tag

Tag signature ‘D2B2’ (44324232h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from Device to PCS. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the AToB2Tag. As with the AToB2Tag, it

 10

defines a transform to achieve a saturation rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 9.2.x DToB3Tag

Tag signature ‘D2B3’ (44324233h)

Allowed tag types: multiProcessElementsType

This tag defines a colour transform from Device to PCS. It supports float32Number-encoded input range,
output range and transform, and provides a means to override the AToB1Tag with associated Absolute
Rendering Intent processing. As with the AToB1Tag and associated Absolute Rendering Intent processing,
it defines a transform to achieve an absolute rendering. The processing mechanism is described in
multiProcessElementsType (see 10.x).

• New Clause: 10.x multiProcessElementsType

10.x.1 General

This structure represents a colour transform, containing a sequence of processing elements. The
processing elements contained in the structure are defined in the structure itself, allowing for a flexible
structure. Currently supported processing elements are: a set of one dimensional curves, a matrix with
offset terms, and a multidimensional lookup table (CLUT). Other processing element types may be added
in the future. Each type of processing element may be contained any number of times in the structure. The
processing elements support float32Number-encoded input and output ranges.

If undefined processing element types are present in a multiProcessElementsType tag, the
multiProcessElementsType tag shall not be used and fall back behavior shall be followed.

When using this type, it is necessary to assign each colour space component to an input and output
channel. These assignments shall be as shown in Table 31.

When used, the byte assignment and encoding shall be as given in Table B.

Table B – multiProcessElementsType encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘mpet’ (6D706574h) [multi-process elements table]
type signature

4..7 4 reserved, must be set to 0

8..9 2 Number of Input Channels uInt16Number

10..11 2 Number of Output Channels uInt16Number

12..15 2 Number of Processing Elements (N) uInt32Number

16..15+8N 8 x N Process Element Positions Table positionNumber[]

16+8N..end Data

The Number of Processing Elements (N) shall be greater than or equal to 1. The Process Element
Positions Table contains information on where and how large the Process Elements are. Offset locations
are relative to the start of the multiProcessElementsType tag. Thus the offset of first stored process
element shall be 16+8N.

Each processing element shall start on a 4-byte boundary. To achieve this, each item shall be followed by
up to three 00h pad bytes as needed.

NOTE: It is permitted to share data between processing elements. For example, the offsets for some
processing elements can be identical.

10.x.2 multiProcessElementsType Elements

 11

Processing elements in the multiProcessElementsType are processed in the order that they are defined in
the Processing Elements Position Table. The results of a processing element are passed on to the next
processing element. The last processing element provides the final result for the containing
multiProcessElementsType. Therefore, the input/output channels specified by the processing elements and
the containing multiProcessElementsType need to be in agreement.

The first processing element’s input channels shall be the same as the input channels of the containing
multiProcessElementsType. The input channels of a processing element shall be the same as the previous
processing element’s output channels. The last processing element’s output channels shall be the same as
the output channels of the containing multiProcessElementsType.

Clipping of the results of a processing element shall not be performed. Some processing elements may
perform clipping as needed on input.

NOTE: The specification for each processing element will indicate whether that element will perform
clipping on input.

NOTE: The general element encoding for multiProcessElementsType elements is shown in Table C.

Table C – General Element encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 Element Signature

4..7 4 reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..end Data

10.x.2.1 Curve Set Element

The Curve Set Element encodes multiple one dimensional curves. The encoding is shown in Table D.

Table D – Curve Set Element encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘cvst’ (6D666C74h) [curve set element table] type
signature

4..7 4 reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..11+8P 8 x P Curve Positions (Offset and Size) positionNumber[]

12+8P..end Data

Encoding values for both Input and Output channels is for consistency with other processing elements.
Since each one dimensional curve maps a single input to a single output the number of outputs will be the
same as the number of inputs. Thus, the number of output channels (Q) shall be set to the same value as
the number of input channels (P).

Each channel shall have a Curve Position element. Offset locations are relative to the start of the
containing curveSetElement. Thus the offset of first stored curve in the curve set shall be 12+8P.

 12

The one-dimensional curves are stored sequentially. Each curve shall start on a 4-byte boundary. To
achieve this, each curve shall be followed by up to three 00h pad bytes as needed.

NOTE: It is permitted to share data between one dimensional curves. For example, the offsets for some
one dimensional curves can be identical.

Each curve is stored in one or more curve segments, with break-points specified between curve segments.
The first curve segment always starts at –Infinity, and the last curve segment always ends at +Infinity. The
first and last curve segments shall be specified in terms of a formula, whereas the other segments shall be
specified either in terms of a formula, or by a sampled curve.

If a curve has a single curve segment, no break-points shall be specified, and the curve shall be specified
in terms of a formula. The encoding for such a curve is shown in Table F.

If a curve has more than one curve segment, break-points shall be specified between curve segments. If
there are N segments, N-1 break-points are specified. The encoding for such a curve is shown in Table E.

Table E – One-dimensional curves encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘curf’ (63757266h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Number of segment(s) (N) uInt16Number

10..11 2 Reserved, must be set to 0

12..4N+7 4 x (N-1) N-1 Break-Points float32Number[…]

4N+8..end Segments 1 to N

Break-points separate two curve segments. The 1

st
 curve segment is defined between –Infinity and break-

point 1 (included). The k
th

 curve segment – k in the range 2 to N-1 – is defined between the break-point k-1
(not included) and the break-point k (included). The N

th
 curve-segment is defined between break-point N-1

(not included) and +Infinity.

The first and last curve segments shall be specified in terms of a formula, whereas the other segments
shall be specified either in terms of a formula, or by a sampled curve.

Curve segments that are specified in terms of a formula shall be encoded as shown in Table F.

Table F – Formula curve segments encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘parf’ (70617266h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Encoded value of the function type uInt16Number

10..11 2 Reserved, must be set to 0

12..end See Table G Parameters (see table G) float32Number[…]

The encoding for the function type field and the parameters is shown in Table G:

Table G – Formula curve segments encoding

Field Length (bytes) Function type Encoded value Parameters

 13

16 Y = (a * X + b) + c 0000h , a, b, c

20 Y = a * log (b * X + c) + d 0001h , a, b, c, d

20 Y = a * b
c*X+d

 + e 0002h a, b, c, d, e

The functional inputs and outputs are defined over the values that can be represented as float32Number.
The curve-segment shall be defined to result in float32Number values for the entire curve-segment.

Curve segments that are specified as sampled curves shall be encoded as shown in Table H.

Table H – Sampled curve segment encoding

Byte
Position

Field
Length
(bytes)

Content Encoded as…

0..3 4 ‘samf’ (73616D66h) type signature

4..7 4 Reserved, must be set to 0

8..11 4 Count (N) specifying the number of entries that
follow

uInt32Number

12..end 4 x N Curve entries float32Number[…]

The Count (N) shall be greater than or equal to 2.

The curve samples shall be equally-spaced within the segment, and shall include one break-point, as
previously described. If the sampled curve represents the curve-segment between break-point k (BPk) and

break-point k+1 (BPk+1), the j
th

 sample (j [1, N]) shall correspond to the input value BPk + j * (BPk+1 –

BPk) / N. Thus BPk is excluded.

If the number of grid points in a particular segment of a one-dimensional curve is two, the data for those
points shall be set so that the correct results are obtained when linear interpolation is used to generate
intermediate values.

10.x.2.2 Matrix Element

The matrix is organized as an array of PxQ+Q elements, where P is the number of input channels to the
matrix, and Q is the number of output channels. The matrix elements are each float32Numbers. The array
is organized as follows:

array = [e11, e12, …, e1P, e21, e22, …, e2P, …, eQ1, eQ2, …, eQP, e1, e2, …, eQ]

Table I –Matrix Element encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘matf’ (6D617466h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..end 4x(P+1)xQ Matrix Elements float32Number[…]

The matrix is used to convert data to a different colour space, according to the following equation:

 14

+•=

QPQPQQ

P

P

Q e

e

e

X

X

X

eee

eee

eee

Y

Y

Y

..................

...

...

...

2

1

2

1

21

22221

11211

2

1

 (x)

The range of the input values X1, X2, …, XP and output values Y1, Y2, …, YQ is the range of values that can
be represented as float32Number.

10.x.2.3 CLUT Element

The CLUT appears as an n-dimensional array, with each dimension having a number of entries
corresponding to the number of grid points.

The CLUT values are arrays of float32Number.

The CLUT is organized as an P-dimensional array with a variable number of grid points in each dimension,
where P is the number of input channels in the transform. The dimension corresponding to the first channel
varies least rapidly and the dimension corresponding to the last input channel varies most rapidly. Each
grid point value is a Q-float32Number array, where Q is the number of output channels. The first sequential
float32Number of the entry contains the function value for the first output function, the second sequential
float32Number of the entry contains the function value for the second output function and so on until all of
the output functions have been supplied. The equation for computing the byte size of the CLUT is defined
below.

nGrid1 * nGrid2 *... * nGridP * number of output channels (Q) * 4 (x)

When used, the byte assignment and encoding for the CLUT shall be as given in Table J.

Table J – CLUT Element encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘clut’ (636C7574h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..27 16 Number of grid points in each dimension. Only the first
P entries are used, where P is the number of input
channels. Unused entries shall be set to 00h.

uInt8Number

28..end See equation
x above

CLUT data points (arranged as described in the text) float32Number[…]

The input range for the CLUT is 0,0 to 1,0. For any input value outside this range, the nearest range limit
value shall be the input value. The range of the Output Channels is the range of values that can be
represented as float32Number.

If the number of grid points in a particular dimension of the CLUT is two, the data for those points shall be
set so that the correct results are obtained when linear interpolation is used to generate intermediate
values. CLUT elements require a minimum of 2 grid points for each dimension.

10.x.2.4 Future Expansion Elements

The ‘bACS’ and ‘eACS’ element types are provided as placeholders for future expansion. If present, these
elements shall be considered as pass through elements with no modification of channel data

Table K – bACS Element encoding

 15

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘bACS ‘ (62414353h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..15 4 Signature

Table L – eACS Element encoding

Byte
Position

Field Length
(bytes)

Content Encoded as…

0..3 4 ‘eACS ‘ (65414353h) type signature

4..7 4 Reserved, must be set to 0

8..9 2 Number of Input Channels (P) uInt16Number

10..11 2 Number of Output Channels (Q) uInt16Number

12..15 4 Signature

For both the ‘bACS’ and ‘eACS’ element types the Number of Input Channels (P) shall be the same as the
Number of Output Channels (Q).

5. Applications and Workflows

5.1 Digital Motion Picture Workflow

This proposal enables the DMP workflow described in Section 1. Consider the connection of a new Profile A
which is a DPX Scene profile, and a new Profile B which is an RGB Working Space profile.

Profile A:

• Contains traditional A2Bx and B2Ax tags.

• Contains new D2B0, D2B2, B2D0 and B2D2 tags that provide float32Number elements to convert between
float32Number-encoded device space and the PCS.

• Contains new D2B3 and B2D3 tags containing unbounded XYZ absolute PCS.

Profile B:

• Contains traditional TRC/Matrix tags.

• Contains new D2B3 and B2D3 tags that include unbounded XYZ absolute PCS.

Both profiles include D2B3/B2D3 tags that make use of an unbounded XYZ absolute PCS.

When using a CMM that is unaware of the new optional D2Bx/B2Dx tags, the connection occurs using the
A2Bx/B2Ax and the TRC/Matrix tags. This enables existing CMMs to use the new profiles in a completely
backwards-compatible manner.

DMP workflows would generally use only the unbounded Absolute Colorimetric Tags D2B3 and B2D3.
However, the other tags are included for completeness – these tags are useful to provide higher precision
colour transforms when required.

 16

5.2 Example of Other Workflows

The proposal (with possible future enhancements) allows the direct encoding of device modeling within the
profile. Additional elements may be required to make this happen, but this proposal lays the groundwork for
these future enhancements.

