Evaluation of biological effect on Iuminance of stereoscopic displays

OKyosuke Takahashi¹⁾,Toshiya Nakaguchi¹⁾ Ryutaro Okamoto²⁾, Junta Asano²⁾, Ichiro Shimoyama²⁾

*1 Graduate School of Engineering, Chiba University, Japan*2 Research Center for Frontier Medical Engineering, Chiba University, Japan

Background

The stereoscopic image has been widely used in a movie, TV, and games.

Objective

□ Study on relationship of 3D parameters and fatigue

Viewing distance	Ujike (2008)	A
Stereoscopic disparities	Kooi (2004)	15 m
Cross talk	Maeda (2010)	

The biological effect on luminance of stereoscopic displays is unknown.

active shutter glasses polarized glasses auto-stereoscopic display

Advantages and faults are different by each method and luminance in sight is different in particular.

Objective

We evaluate biological effect on luminance of stereoscopic displays by the subjective and objective experiments.

Feb. 1, 2013

ICC/Chiba Color Experts' Day

Contents

- Introduction
- Experiments
 - Double stimuli evaluation
 - Single stimulus evaluation
- Experimental results and Discussion
- Conclusion and Future works

2

Experiments

1. Double stimuli evaluation

Double stimuli evaluation

Image(1) Im	ag	2 Qué	estionnaire	
10sec 1	0s	с		
Item	Po	<mark>itive parameter</mark> Ey	e strain	
1. feel a sense realism		Physical fatigue of the autonomic nervous system		
2. feel a sense of depth				
3. cannot watch it clearly immediately		ntai latigue autonomi	Total latigue	
4. feel a pain in eyes or blurred vision		1 feel a sense realism		
5. feel a headache or pain in the middle				
forehead	1	hage $\textcircled{1}$ has it	Image② has it	
6. feel sick		very much.	very much.	
7. feel awkward or uncomfortable				
8. feel lethargic or depressed		50	50	
9. be tired				

- Two images with different luminance are presented sequentially in ten seconds, and subjects were asked to make a judgment as to which image was suited to the questions.
- The subject answers it in an alignment without the scale.
- The answer is recorded in the value of -50 to 50.

Feb 1 2013	ICC/Chiba Color Experts' Day	
100.1,2010		

Single stimulus evaluation

- The question items and answer method are the same as double stimuli evaluation.
- A score is defined by taking a difference of before and after viewing.
- The answer is recorded in the value of 0 to 100.
- Positive question items assume a value 0 before viewing.

Single stimulus evaluation

Pupil detection

- Pupil detection is conducted by characteristic that infrared reflection of the pupil is low.
- Pupil radius is calculated by image processing.

Single stimulus evaluation

Experimental results (Double stimuli evaluation)

Significant change related to the luminance of the display was shown in every questionnaire item.

From this result, it was suggested that high luminance of stereoscopic displays increases realism and perception of depth but also increases fatigue.

```
Feb. 1, 2013
```

ICC/Chiba Color Experts' Day

Experimental results (Double stimuli evaluation)

Item	All data	R < 7.81
1.feel a sense realism	* *	* *
2.feel a sense of depth	* *	* *
3.cannot watch it clearly immediately	*	
4.feel a pain in eyes or blurred vision	* *	* *
5.feel a headache or pain in the middle forehead	* *	* *
6.feel sick	*	*
7.feel awkward or uncomfortable	*	
8.feel lethargic or depressed	*	*
9.be tired	* *	* *
;	* p < 0.05	* * p < 0.0

Significant change related to the luminance was still shown in almost questionnaire items by extracting data in the criteria of reproduction error.

Because significant difference was shown from the data which has high reproducibility, influence by the luminance was shown.

10

Experimental results (Single stimulus evaluation)

Significant change related to the luminance of the display was not shown in any questionnaire item.

Experimental results (Single stimulus evaluation)

All data	R < 18.32
	* *
	All data

* p < 0.05 * * p < 0.01

By extracting data in the criteria of reproduction error, significant change related to the luminance almost was not shown.

It was found that it was difficult to evaluate biological effect on luminance change of stereoscopic displays by single stimulus.

Experimental results (Pupillary light reflex)

From results of pupillary light reflex, no significant change related to the luminance was shown.

It was found that it is difficult to evaluate biological effect on luminance of stereoscopic displays with these indexes.

ICC/Chiba Color Experts' Day

Experimental results (Pupillary light reflex)

By extracting data in the criteria of reproduction error, significant change related to the luminance was shown.

It was suggested that these three indexes have positive correlation with the display luminance.

Feb. 1, 2013

ICC/Chiba Color Experts' Day

Experimental results (ECG)

16

Experimental results (ECG)

Conclusion and future work

