Evaluation of biological effect on luminance of stereoscopic displays

Kyosuke Takahashi¹[^1], Toshiya Nakaguchi¹[^1], Ryutaro Okamoto²[^2], Junta Asano²[^2], Ichiro Shimoyama²[^2]

[*¹ Graduate School of Engineering, Chiba University, Japan
*² Research Center for Frontier Medical Engineering, Chiba University, Japan

Background

- The stereoscopic image has been widely used in a movie, TV, and games.

Stereoscopic image

- provides reality and promotion of understanding.
- provides the fatigue and the evaluation of biological effect is still unknown.
Objective

- Study on relationship of 3D parameters and fatigue

<table>
<thead>
<tr>
<th>Viewing distance</th>
<th>Ujike (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross talk</td>
<td>Maeda (2010)</td>
</tr>
</tbody>
</table>

The biological effect on luminance of stereoscopic displays is unknown.

Advantages and faults are different by each method and luminance in sight is different in particular.

Objective

We evaluate biological effect on luminance of stereoscopic displays by the subjective and objective experiments.

Contents

- Introduction
- Experiments
 - Double stimuli evaluation
 - Single stimulus evaluation
- Experimental results and Discussion
- Conclusion and Future works
Experimental condition

- Subjects: Twelve healthy people (male 9, female 3, age 20-23)
- Display: Active shutter glasses technology, 1920 × 1080 pixel
- Viewing distance: 2040mm (3H)
- The average luminance of stereoscopic displays: 4-level (19, 27, 35, 42cd/m²)

We conducted experiments in a dark room in order to eliminate the influence of environmental light.

Experiments

1. Double stimuli evaluation

 Image① → Image② → Questionnaire

 10sec → 10sec

2. Single stimulus evaluation

 Questionnaire → Pupillary light reflex → Image① → Pupillary light reflex → Questionnaire

 30min

Reproducibility

- We confirmed experimental accuracy and reproducibility by conducting repetitive experiments.

\[R = \sqrt{\frac{(S_1 - m)^2 + (S_2 - m)^2}{2}} \]

\(R \): reproduction error
Double stimuli evaluation

Procedure:
- Two images with different luminance are presented sequentially in ten seconds, and subjects were asked to make a judgment as to which image was suited to the questions.
- The subject answers it in an alignment without the scale.
- The answer is recorded in the value of -50 to 50.

Items:
- 1. feel a sense of realism
- 2. feel a sense of depth
- 3. cannot watch it clearly immediately
- 4. feel a pain in eyes or blurred vision
- 5. feel a headache or pain in the middle forehead
- 6. feel sick
- 7. feel awkward or uncomfortable
- 8. feel lethargic or depressed
- 9. be tired

Example:

<table>
<thead>
<tr>
<th>Image ①</th>
<th>Image ②</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. feel a sense realism</td>
<td>1. feel a sense realism</td>
</tr>
<tr>
<td>Image① has it very much.</td>
<td>Image② has it very much.</td>
</tr>
<tr>
<td>-50</td>
<td>50</td>
</tr>
</tbody>
</table>

Single stimulus evaluation

Procedure:
- The question items and answer method are the same as double stimuli evaluation.
- A score is defined by taking a difference of before and after viewing.
- The answer is recorded in the value of 0 to 100.
- Positive question items assume a value 0 before viewing.

Example:

1. feel a sense realism

<table>
<thead>
<tr>
<th>Very few</th>
<th>Very many</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Single stimulus evaluation

Pupil detection
- Pupil detection is conducted by characteristic that infrared reflection of the pupil is low.
- Pupil radius is calculated by image processing.

Contraction motion

LED lighting
- White LED
- Infrared LED

Pupil diameter
- Shrinkage rate
- Shrinkage speed
- Recovery speed

ECG (electrocardiogram)
- An autonomic nerve activity is analyzed by measuring the R-R interval in ECG.

Method of analysis
- LF/HF
 - LF/HF High: stress
 - LF/HF Low: relax
- Monitoring change of LF/HF

R-R interval
- 100 of R-R interval samples which extracted in each of before viewing, after viewing, and while viewing.
Experimental results (Double stimuli evaluation)

Significant change related to the luminance of the display was shown in every questionnaire item.

From this result, it was suggested that high luminance of stereoscopic displays increases realism and perception of depth but also increases fatigue.

Experimental results (Double stimuli evaluation)

<table>
<thead>
<tr>
<th>Item</th>
<th>All data</th>
<th>R < 7.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. feel a sense realism</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>2. feel a sense of depth</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3. cannot watch it clearly immediately</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>4. feel a pain in eyes or blurred vision</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>5. feel a headache or pain in the middle forehead</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>6. feel sick</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>7. feel awkward or uncomfortable</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>8. feel lethargic or depressed</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>9. be tired</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Significant change related to the luminance was still shown in almost questionnaire items by extracting data in the criteria of reproduction error.

Because significant difference was shown from the data which has high reproducibility, influence by the luminance was shown.
Experimental results (Single stimulus evaluation)

Significant change related to the luminance of the display was not shown in any questionnaire item.

By extracting data in the criteria of reproduction error, significant change related to the luminance almost was not shown.

It was found that it was difficult to evaluate biological effect on luminance change of stereoscopic displays by single stimulus.
Experimental results (Pupillary light reflex)

All data

From results of pupillary light reflex, no significant change related to the luminance was shown.

Experimental results (Pupillary light reflex)

By extracting data in the criteria of reproduction error, no significant change related to the luminance was still shown.

It was found that it is difficult to evaluate biological effect on luminance of stereoscopic displays with these indexes.
Experimental results (Pupillary light reflex)

By extracting data in the criteria of reproduction error, significant change related to the luminance was shown.

It was suggested that these three indexes have positive correlation with the display luminance.

Experimental results (ECG)

ex) Subject L (luminance 19)
Experimental results (ECG)

Significant change related to the time was shown. No significant change related to the luminance was shown.

Conclusion and future work

Conclusion

• We presented the subjective and objective evaluation of biological effect by changing the luminance of stereoscopic displays.

• The relationship between fatigue and displaying luminance was shown in both subjective and objective evaluations.

Future Work

• We'll experiment in a parameter different stuff than the luminance and conduct a comparison with 2D images.