ICC Chiba Color Experts' Day 2013

4D-MRI Reconstruction of Thoracoabdominal Organs

Windra Swastika

Graduate School of Engineering, Chiba University, Japan

Feb 1, 2013

Outline

- Background
- Methodology
- Results
- Conclusion

Background

- Understanding respiratory organ motion can be useful in many clinical applications:
 - locating the tumors position in radiotherapy planning,
 - examining pulmonary diseases,
 - analyzing some irregularities in respiratory.

However, to capture "real-time" 4D MRI using current MR Scanner is **not possible**.

- Long acquisition time.
- Image resolution problems.
- Respiratory motion can cause noise/artifacts.

Background

• 4D MRI Reconstruction

4D MRI Reconstruction

Some issues in 4D MRI reconstruction are:

- Done semi-automatically.
- Total acquisition time per person is about 30 minutes.

What is needed are:

- ✓ Simplify 4D MRI using statistical modeling.
- ✓ Automatic process and reduce time acquisition.
- Faster acquisition time of 2D MRI using compressed sensing.

Coordinate system $f_{navi} \qquad \qquad f_{data}(y_i)$	Navigator Slice (NS) (f _{navi}) Data Slice (DS) (f _{data} (y _i))
	NS is time sequential 2D-MR images in sagittal plane which consists of several hundred frames that forms several respiratory patterns. DS is time sequential 2D-MR images in coronal plane. One set data slice consists of several slices along the y axis to cover 3D images volume.
Navigator Slice (NS) Data Slice (DS)	DS are set along the Y axis and intersect with a single NS.
Z Y f _{navi} f _{data} (y ₂) f _{data} (y ₂) X	 f_{data}(y_i) intersect with f_{navi} at location (x, y_i). One set of DS consists of several slices along the Y axis to cover 3D images volume.
	2D Image acquisition
	 NS is obtained first at certain X axis location, followed by DS acquisition at location y_{i∈1, 2, 3,, n} sequentially. The number of frame in NS, varies between 400, 800 and 1200 frames.

1. Extract Respiratory Patterns at NS

2. Find the best intersection

STEP 4 Generate a spatiotemporal patterns from each DS at intersection location.

STEP 5 Find best normalized cross correlation (NCC) value between each respiratory patterns found in $S_{navi}(y_i)$ and $S_{data}(y_i)$.

STEP 6 Find the best NCC value from all Y position. Calculate the geomean of all respiratory patterns found. The geomean for *p*-th pattern is expressed as: $G_p = (\prod_{i=1}^n N_{i,p})^{1/n}$

3. Time reduction using threshold

3. Time reduction using threshold

Results

• 4D MRI Reconstruction and volume rendering

The reconstructed 4D-MR images were visualized by a volume rendering technique implemented in Osirix

Results

By applying FT and AT approach, the total time acquisition can be reduced by 45% on average for FT approach and 47% on average for AT approach compared with w/o T approach. However, the trade-off of time reduction is the quality of 4D-MRI reconstruction – as seen in the graph above.

Results

The displacement error range of 6 subjects are 2.9-3.5mm, 3.0-3.6mm and 2.3-3.6mm for w/o T, FT and AT approach respectively.

This error is thought to be a clinically acceptable error, because the typical size of tumors requiring treatment is on the order of tens of millimeters

Conclusion

- 4D-MRI reconstruction using intersection profile method.
- Reduce time acquisition by applying fixed threshold (FT) and adaptive threshold (AT).
- Data acquisition can be reduced on average 45% (FT) and 47% (AT).
- The displacement error of Z position was 3.0-3.6mm (FT) and 2.3-3.6mm (AT), which is implementable for clinical application.

Thank you for your attention

