### Assessing Colour Differences near the Neutral Axis

#### Guihua CUI

Wenzhou University, Wenzhou 325035, China

#### M. Ronnier LUO

University of Leeds, Leeds LS2 9JT, UK

#### Min HUANG, Haoxue LIU

**Beijing Institute of Graphic Communication, Beijing 102600, China** 

# Introduction

- Grey reproduction for printing industry proposed by ISO TC 130 "Graphic technology"
  - > to map near-neutral colours from the white point of the substrate to the black point
    - $a^*=a^*_{paper} [1-0.85(L^*_{paper}-L^*)/(L^*_{paper}-L^*_{cmy})]$
    - $b^* = b^*_{paper} [1-0.85(L^*_{paper}-L^*)/(L^*_{paper}-L^*_{cmy})]$
- The recent colour-difference metrics, both CIEDE2000 and CMC, have major flaws in assessing colours near the neutral axis

## Motivation

- To investigate the visual differences between two grey stimuli, that may be different in chroma and hue
- To obtain a definition of the percept of grey near the neutral axis that is linked to a CIE colour metric

# **Existing BFD Data**

#### • BFD data

- In 1986, Luo and Rigg accumulated most of the available experimental data relating to small to medium colour differences of surface colours.
- The data accumulated included various surface media: textile, paint, ink, etc.
- > Includes 2776 pairs of colour difference samples
- > Over 120 colour discrimination ellipses were fitted from these data sets
- > All ellipses from different studies were scaled to have similar sizes, but keep their orientations and shapes

# **BFD** ellipses



- ✓ CIELAB is a poor space
  - Not constant size circles
  - Small neutral ellipses
  - Large and long highchroma ellipses
- Point towards the neutral point except blue

**Assessing Colour Differences near the Neutral Axis** 

# **BFD** neutral ellipses



✓ Not constant-size circles
 ✓ Orientated to around 90°
 ✓ A redness-greenness scale (a') in the CIEDE2000

Assessing Colour Differences near the Neutral Axis

## Neutral samples in BFD data

| Sub-data                          | Conditions                                                                           | Pairs | Mean $\Delta E^*_{ab}$ | $Max \Delta E^*_{ab}$ |
|-----------------------------------|--------------------------------------------------------------------------------------|-------|------------------------|-----------------------|
| All Neutral                       | $C^*_{ab} \leq 10$                                                                   | 423   | 1.7                    | 8.3                   |
| $\Delta L$ only                   | $ \Delta L/\Delta E  \ge 90\%$                                                       | 88    | 2.3                    | 6.2                   |
| $\Delta L + \Delta C + \Delta H$  | $ \Delta L/\Delta E $ , $ \Delta C/\Delta E $ and $ \Delta H/\Delta E $ are $< 90\%$ | 64    | 1.7                    | 8.3                   |
| $(\Delta C^2 + \Delta H^2)^{0.5}$ | $(\Delta C^2 + \Delta H^2)^{0.5} / \Delta E \ge 90\%$                                | 271   | 1.5                    | 5.1                   |
| $\Delta C$ only                   | $ \Delta C/\Delta E  \ge 90\%$                                                       | 88    | 1.4                    | 4.3                   |
| $\Delta H$ only                   | $ \Delta H/\Delta E  \ge 90\%$                                                       | 70    | 1.5                    | 5.1                   |
| $\Delta C + \Delta H$             | $ \Delta C/\Delta E  < 90\%$ and $ \Delta H/\Delta E  < 90\%$                        | 113   | 1.6                    | 4.3                   |

### **Performance of original formulae (STRESS)**

| Sub-data                          | CIELAB | CIEDE2000 |
|-----------------------------------|--------|-----------|
| BFD                               | 42.5   | 29.6      |
| All Neutral                       | 30.2   | 25.1      |
| $\Delta L$ only                   | 28.9   | 28.2      |
| $\Delta L + \Delta C + \Delta H$  | 31.6   | 27.8      |
| $(\Delta C^2 + \Delta H^2)^{0.5}$ | 24.2   | 21.2      |
| $\Delta C$ only                   | 26.5   | 21.9      |
| $\Delta H$ only                   | 17.9   | 16.6      |
| $\Delta C + \Delta H$             | 25.7   | 22.0      |

- ✓ CIEDE2000 is better than CIELAB
- ✓ All formulae predicted neutral data better than the full BFD data
- ✓ All formulae predicted  $\Delta H$  better than  $\Delta L$  and  $\Delta C$
- ✓ CIEDE2000 predicted chromatic differences better than others

### **Performance of optimised** $k_{\rm L}$ **formulae**

| Sub-data                          | CIELAB | CIEDE2000 |
|-----------------------------------|--------|-----------|
| All Neutral                       | 26.2   | 24.9      |
| $\Delta L$ only                   | 26.4   | 27.7      |
| $\Delta L + \Delta C + \Delta H$  | 28.7   | 27.1      |
| $(\Delta C^2 + \Delta H^2)^{0.5}$ | 24.4   | 21.3      |
| $\Delta C$ only                   | 26.6   | 22.0      |
| $\Delta H$ only                   | 18.0   | 16.5      |
| $\Delta C + \Delta H$             | 25.7   | 22.2      |
| $k_{\rm L}$                       | 1.5    | 1.1       |

- ✓ CIEDE2000 is better than CIELAB, except for '∆L only'
- $\checkmark$  CIELAB has  $k_{\rm L} \ge 1.5$
- $\checkmark~$  All formulae predicted  $\Delta H$  better than  $\Delta L$  and  $\Delta C$

### **Performance of optimised** $k_{\rm L}$ , $k_{\rm C}$ formulae

| Sub-data                          | CIELAB | CIEDE2000 |
|-----------------------------------|--------|-----------|
| All Neutral                       | 26.2   | 24.5      |
| $\Delta L$ only                   | 26.4   | 27.5      |
| $\Delta L + \Delta C + \Delta H$  | 28.5   | 27.4      |
| $(\Delta C^2 + \Delta H^2)^{0.5}$ | 24.3   | 20.7      |
| $\Delta C$ only                   | 26.8   | 21.1      |
| $\Delta H$ only                   | 17.9   | 16.6      |
| $\Delta C + \Delta H$             | 25.8   | 21.5      |
| $k_{ m L}$                        | 1.6    | 1.0       |
| $k_{\rm C}$                       | 1.0    | 0.9       |

- ✓ CIELAB has  $k_{\rm L} \ge 1.5$ , but all have  $k_{\rm C} \approx 1.0$
- $\checkmark~$  All formulae predicted  $\Delta H$  better than  $\Delta L$  and  $\Delta C$
- ✓ CIEDE2000 is better than CIELAB, except for ' $\Delta$ L only'

## **New Experimental Data**

- 50 pairs of neutral printed samples
  > By an EPSON Stylus PRO 7800 ink-jet printer
  > 32 pairs mainly in hue differences
  > 18 pairs mixed with ΔL, ΔC and ΔH
- The mean CIELAB colour difference of the 50 sample pairs was 3.0 ranging from 0.1-5.5
- Grey-scale method
- 35 observations (23 observers × 1 time + 6 observers × 2 times)

### **Samples distribution**



### **Samples distribution**



### **Samples distribution**



### Visual Assessments

- In a dark room
- A GretagMacbeth Judge II viewing cabinet with a D65 simulator
- Illuminance level 950 lx
- The viewing geometry was about 0°/45°
- Viewing distance about 50 cm

## Visual Assessments

• Grey scales

Same size, same substrate as test pairs

> 6 grades with  $\Delta E^*$  from 1.0 to 6.0

- The Observer were ask to gave the color difference grade of test pairs
- Intermediate grades are valid, e.g., 3.6
- Visual difference:  $\Delta V_{GS} = 1.0123G - 0.0381$



### **Results**



- ✓ CIEDE2000 is better than CIELAB
- ✓ It is confirmed again the prediction for ∆H in neutral region is not a main problem
- $\checkmark \Delta L$  and  $\Delta C$  may play a main role in neutral

# Conclusions

- Two datasets, existing BFD and new printed dataset, were considered
- CIEDE2000 is better than CIELAB in general
- Human eyes predicted hue difference in neutral region better than lightness and chroma differences