

CIE Division 1 Vision and Colour ISO Technical Committee 130 Graphic Technology

CIE/ISO new standard: CIEDE2000

Manuel Melgosa, Ph.D.

Full Professor in Optics Department of Optics, University of Granada (Spain)

University of Leeds (UK), 4 July 2013 (10:15 – 10:30)

Outline

- 1. Introduction
- 2. CIEDE2000 General Structure
- 3. CIEDE2000 Performance
- 4. CIEDE2000, Milestone or Final Answer?

1. Introduction

History of CIE Colour-Difference Formulas

1964: CIE 1964 (U*V*W*) 1976: CIE 1976 (L*u*v*) ≡ CIELUV 1976: CIE 1976 (L*a*b*) ≡ CIELAB 1995: CIE94 2000: CIEDE2000

CIE TC 1-57 "Standards in Colorimetry" (Chair: A. Robertson):

- ISO 11664-4:2008(E) / CIE S 014-4 E:2007. Joint ISO/CIE Standard: CIE Colorimetry – Part 4: 1976 L*a*b* Colour Space.
- ISO 11664-5:2009(E) / CIE S 014-5 E:2009. Joint ISO/CIE Standard: CIE Colorimetry – Part 5: CIE 1976 L*u*v* Colour Space and u',v' Uniform Chromaticity Diagram.

- CIE DS 014-6/E:2012, "Colorimetry - Part 6: CIEDE2000 colour-difference formula," CIE Central Bureau, Vienna (2012).

"Industrial Colour-Difference Evaluation"

Konica Minolta Sensing, Inc. Precise Color Communication. 1998.

To replace visual <u>subjective</u> judgments (ΔV) by instrumental <u>objective</u> measurements (ΔE)

CIELAB-Based Colour-Difference Formulas

CIEDE2000 was first proposed by CIE TC 1-47 (Chair: David H. Alman) in CIE Publ. 142-2001, and discussed by Luo, Cui & Rigg CR&A 26, 340-350 (2001). Latter in 2013 CIE TC 1-57 (Chair: Alan Robertson) proposed it as a Standard.

CIE S 014-6/E:2013	[*] The chairperson of this TC was A.R. Robertson (CA), members were: P.J. Alessi (US), M. Brill (US), J. Campos Acosta (ES), E. Carter (US), R. Connelly (US), JF. Decarreau (FR), R. Harold (US), R. Hirschler (HU), B. Jordan (CA), C. Kim (KR), D. McDowell (US), P. McGinley (AU), M. Melgosa (ES), Y. Ohno (US), M.R. Pointer (GB), K. Richter (DE), G. Rösler † (DE), J.D. Schanda (HU), R. Sève (FR), K. Witt (DE), H. Yaguchi (JP), J. Zwinkels (CA).
Colorimetry – Part 6: CIEDE2000 Colour-Difference Formula	© CIE 2013 - All rights reserved III
Farbmessung – Teil 6: CIEDE2000-Farbabstandsformel	CIE S 014-6/E:2013 CONTENTS Foreword III Introduction 1
CIE International Standards are copyrighted and shall not be reproduced in any form, entirely or partly, without the explicit agreement of the CIE.	1 Scope 1 2 Normative References 1 3 Definitions, Symbols and Abbreviations 1 4 Reference Conditions 3 5 Calculation Method 3
CIE Central Bureau, Vienna CIE S 014-8/E:2013 Kegelgasse 27, A-1030 Vienna, Austria	6 Parametric Factors

2. CIEDE2000 General Structure (CIE Publ. 142-2001, CIE S 014-6/E:2013)

$$\Delta E_{00} = \left(\left(\frac{\Delta L^*}{k_L S_L} \right)^2 + \left(\frac{\Delta C'}{k_C S_C} \right)^2 + \left(\frac{\Delta H'}{k_H S_H} \right)^2 + R_T \left(\frac{\Delta C' \Delta H'}{S_C S_H} \right) \right)^{1/2}$$

- Weighting Functions: S_L , S_C , S_H , R_T , Neutral. Positional corrections to the lack of uniformity of CIELAB.
- Parametric Factors: k_L, k_C, k_H Corrections accounting for the influence of experimental viewing conditions.

Weighting Functions in CIEDE2000

Five positional corrections to CIELAB are introduced in CIEDE2000:

- New S_L function (crispening effect)
- The same S_c function proposed by CIE94
- New S_H function depending on both C^*_{ab} and h_{ab}
- Rotation term R_{T}
- New a* scale (only for color-difference purposes)

The S_L weighting function in CIEDE2000

$$S_L = 1 + \frac{0.015(\overline{L'} - 50)^2}{\sqrt{20 + (\overline{L'} - 50)^2}}$$

dataset accumulated by Chou *et al.* The lightness weighting functions of Eq. (4), the best fit polynomial, and CIE94 equations are also plotted using the solid, dotted, and double-dashed lines.

Results from Nobbs et al. (1997) moved the CIE to propose for CIEDE200 a Vshaped S_L function assuming a background with L*=50, considering also its relationship with the so-called '<u>crispening effect</u>'.

One of the major differences between CMC, BFD and CIE94 was the S_L function.

The S_c weighting function in CIEDE2000

This is the most important positional correction to CIELAB, as earlier reported by McDonald in 1974. The S_c proposed by CMC, BFD and CIE94 formulas were very similar, and CIE94 adopted the simplest (linear) dependence.

The S_H weighting function in CIEDE2000

• Experiments by Quiao et al. at RIT (1998) led to a hue-angle dependence in the S_H function of the CIEDE2000 formula in addition to the C*_{ab} dependence in CIE94.

The Rotation Term R_{τ} in CIEDE2000

As earlier considered by the BFD formula, the experimental ellipses in the medium-high chroma of the blue region are not in the radial direction in a*b* (as assumed by CMC or CIE94), but rotated counterclockwise.

The neutral colours correction in CIEDE2000

Experimental discrimination contours in the neutral area are not circles, but ellipses vertically oriented. This modification of a* is only proposed for the specific purpose of colour-difference evaluation.

Parametric Factors using CIEDE2000

 $k_L = k_C = k_H = 1$ under 'reference conditions':

- Illumination: D65 source
- Illuminance: 1000 lx
- Observer: Normal color vision
- Background field: Uniform, neutral gray with L*=50
- Viewing mode: Object
- Sample size: Greater than 4 degrees
- Sample separation: Direct edge contact
- Sample color-difference magnitude: Lower than 5.0 $\Delta E^*_{ab.}$
- Sample structure: Homogeneous (without texture)

✓ In textile industry it is common practice to use k_L =2.0

The weighting functions S_L , S_C , S_H (or the parametric factors k_L , k_C , k_H) can be interpreted as the semi-axis lengths of colour discrimination ellipsoids in CIELAB colour space.

The complexity of CIEDE2000: Is this a problem? CIEDE2000 has not an associated color space

$$\begin{split} \Delta E_{00} = \\ \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \left(\frac{\Delta C'}{k_C S_C}\right) \left(\frac{\Delta H'}{k_H S_H}\right)}, \end{split}$$

 $L' = L^*$ $a' = (1 + G)a^*$ $b' = b^*$ $C' = \sqrt{a'^2 + b'^2}$ $h' = \tan^{-1}(b'/a')$,

where

$$G = 0.5 \left(1 - \sqrt{\frac{\overline{C_{ab}^*}^7}{\overline{C_{ab}^*}^7 + 25^7}} \right),$$

where $\overline{C_{ab}^*}$ is the arithmetic mean of the C_{ab}^* values for a pair of samples.

where

$$S_L = 1 + \frac{0.015(\overline{L'} - 50)^2}{\sqrt{20 + (\overline{L'} - 50)^2}}$$

and

$$S_C = 1 + 0.045 \overline{C'}$$

and

$$S_H = 1 + 0.015 \overline{C'T}$$

where

$$T = 1 - 0.17 \cos(\overline{h'} - 30^\circ) + 0.24 \cos(2\overline{h'}) + 0.32 \cos(3\overline{h'} + 6^\circ) - 0.20 \cos(4\overline{h'} - 63^\circ)$$

and

$$R_T = -\sin(2\Delta\theta)R_C$$

where

$$\Delta \theta = 30 \exp\{-[(\overline{h'} - 275^{\circ})/25]^2\}$$

and

$$R_{C} = 2 \sqrt{\frac{\bar{C}'^{7}}{\bar{C}'^{7} + 25^{7}}}.$$

3. CIEDE2000 Performance

STRESS (%) for the three last CIE-recommended formulas

COM Weighted (11273 color pairs)

From CIELAB to CIE94 STRESS decreased 11.8 units.

From CIE94 to CIEDE2000 STRESS decreased 4.6 units (2.5 times lower).

STRESS (%) increase for reduced models & COM Weighted

For the COM Weighted dataset each one of the corrections proposed by CIEDE2000 or CIE94 were found statistically significant at 95% confidence level.

CIEDE2000 (but not CIE94) significantly improves CMC

$\Delta \mathbf{E^*}_{ab}$	Δ Ε ₀₀
5.5	7.9
5.4	2.6
5.6	5.1
3.9	2.0
4.1	2.4

From Test Targets 8.0, Prof. Bob Chung. Rochester Institute of Technology, NY, USA

#5

#9

#10

10 Color Pairs produced by Dr. David H. Alman (DuPont, USA)

M. Melgosa et al. "Practical demonstration of the CIEDE2000 corrections to CIELAB using a small set of sample pairs", Color Res. Appl. DOI 10.1002/col.21751

4. CIEDE2000, Milestone or Final Answer?

✓ The performance of all formulas <u>strongly deteriorates</u> below 1.0 CIELAB unit.

 \checkmark At highest ranges all formulas are <u>slightly</u> worse (except CIELAB and CIE94).

CIE TC 1-55: Currently, we have no candidate color space (e.g. DIN99, CAM02, OSA-GP, etc.) providing statistically significant improvement upon CIEDE2000.

R. Huertas, M. Melgosa, E. Hita, "Influence of random dot textures on perception of suprathreshold color differences," JOSA A 23, 2067-2076 (2006)

• Lightness texture (A) mainly affects k_L while Chroma texture (C) affects k_C .

• Black-dots textures (E) with increasing percentages of covered surface strongly increase k_L , k_C , k_H (not only k_L).

CIE TC 8-02 and CIE Publ. 199:2011: Either CIEDE2000 (2:1:1) or CIELAB (2:1:1) is recommended for future investigation. A version of S-CIELAB is also recommended, specially for dealing with halftone or compressed images.

J. Opt. Soc. Am A. 30, 616 -626 (2013):

Color-difference evaluation for digital images using a categorical judgment method

Haoxue Liu,¹ Min Huang,¹ Guihua Cui,^{2,*} M. Ronnier Luo,³⁴ and Manuel Melgosa⁵

¹School of Printing & Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China ²Wenzhou University, Wenzhou 325035, China ³Colour, Imaging and Design Research Centre, University of Leeds, Leeds LS2 9JT, UK

⁴State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China

⁵Departamento de Óptica, Facultad de Ciencias (Edificio Mecenas), Universidad de Granada, Granada 18071, Spain *Corresponding author: guihua.cui@gmail.com

Specifically, CIEDE2000(2.3:1) performed the best, with a satisfactory average *STRESS* value of 25.8, which is very similar to the 27.5 value that was found from the CIEDE2000(1:1) formula for the combined weighted dataset of homogeneous color samples employed at the development of this formula [J. Opt. Soc. Am. A 25, 1828 (2008),

Color Res. Appl. 28, 425-435 (2003):

A Top Down Description of S-CIELAB and CIEDE2000

Garrett M. Johnson,* Mark D. Fairchild

Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623

Color Res. Appl. 27, 126-128 (2002)

COMMUNICATIONS AND COMMENTS

CIEDE2000, Milestone or Final Answer? ROLF G. KUEHNI 4112 Blaydes Court Charlotte, NC 28226 DOI 10.1002/col.10035

Further Comments on CIEDE2000

M. R. LUO, G. CUI, AND B. RIGG DOI 10.1002.col.10043

"The CIEDE2000 formula may not be the final word with respect to a colour difference formula for small colour differences for industry... The experimental data on which the formula is based are far from perfect... However, at the present time the formula represents the best that can be achieved... In our view, CIEDE2000 is timely because there are two different formulae (CMC and CIE94) being widely used at present. This is clearly unsatisfactory. The new formula offers significant improvements over both... **Progress on unresolved questions requires different viewpoints being put forward to stimulate new ideas.**"

Thank you!

Manuel Melgosa, Department of Optics, University of Granada (Spain) Email: mmelgosa@ugr.es

Acknowledgment: Research Project FIS2010-19839

UNIÓN EUROPEA

FONDO EUROPEO DE DESARROLLO REGIONAL

"Una manera de hacer Europa"