EXTENDED GAMUT PRINTING

Karan Patel
Susan Nguyen
Jasmine Ragual
Paula Roque
SCOPE & SUMMARY

• Measure the accuracy of colour mapping with extended gamut printing by using Orange, Green and Violet in addition to the four process colours (CMYK)

• We will be comparing five samples from different printing processes

• The purpose of this test is to explore the capabilities of 7-colour printing process (CMYK+OVG) compared to the standard 4-colour process (CMYK)

• There are several conditions and factors that need to be taken into consideration
EXPECTED OUTCOME

• We expect the printed samples using CMYK process printing to show variation in colour due to different colour gamut of tested devices

• We expect printed samples using a 7 colour printing process to display accuracy across different devices

• We predict very little variation in the image quality based on the printing process

EDUCATIONAL GAINS

• Each device has variable that determines its gamut which cannot be replicated exactly by other device

• It shows that some device have advantage over other in terms of outputting more colors using extended gamut

• The extended gamut technology is to help achieve a broader range of colours
MATERIAL

- **Stock (Inkjet Proof):** Epson Coated Photo Paper 44”
- **Ink Cartridges (Inkjet Proof):** Orange, Green, Violet
- **Stock (Offset Proof):** Earnscliff Linen 182M, 148 gsm
- **Offset Ink:** hubergroup Esko Orange 2 ONX 5150-V, hubergroup Esko Prem. Violet 3 ONX 51501-V, hubergroup Esko Green 4 ONX 51502-V, Black, Process Cyan, Process Magenta, Process Yellow
- **Printed Samples:**
 - Xerox iGen 5 Sample
 - Flexographic Sample
 - Heidelberg Offset Sample

EQUIPMENT

- **Software**
 - X-Rite i1Profiler software on the iMacs
 - CHROMIX ColorThink Pro
 - Esko Equinox Photoshop Plugin
 - EFI Fiery RIP
- **Machines**
 - Prüfbau - Dr.Ing. H. Durner, #82380
 - Pipette
 - Spectrophotometer - X-Rite, eXact
 - X-Rite, i1Pro2 Spectrophotometer
 - Epson SureColor P9000
<table>
<thead>
<tr>
<th>Sample</th>
<th>Cyan</th>
<th>Magenta</th>
<th>Yellow</th>
<th>Orange</th>
<th>Green</th>
<th>Violet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson SureColor P9000</td>
<td>L*: 57.2</td>
<td>L*: 45.2</td>
<td>L*: 85.9</td>
<td>L*: 59.08</td>
<td>L*: 57.08</td>
<td>L*: 36.5</td>
</tr>
<tr>
<td></td>
<td>a*: -19.61</td>
<td>a*: 72.38</td>
<td>a*: -3.52</td>
<td>a*: 57.25</td>
<td>a*: -59.80</td>
<td>a*: 6.88</td>
</tr>
<tr>
<td></td>
<td>b*: -46.72</td>
<td>b*: -9.74</td>
<td>b*: 89.56</td>
<td>b*: 84.11</td>
<td>b*: 45.04</td>
<td>b*: -59.62</td>
</tr>
<tr>
<td>Heidelberg Offset Sample</td>
<td>L*: 58.89</td>
<td>L*: 50.9</td>
<td>L*: 85.16</td>
<td>L*: 68.97</td>
<td>L*: 61.3</td>
<td>L*: 17.10</td>
</tr>
<tr>
<td></td>
<td>a*: -33.48</td>
<td>a*: 76.97</td>
<td>a*: -4.49</td>
<td>a*: 68.85</td>
<td>a*: -78.78</td>
<td>a*: 48.27</td>
</tr>
<tr>
<td></td>
<td>b*: -55.38</td>
<td>b*: -5.46</td>
<td>b*: 66.5</td>
<td>b*: 76.53</td>
<td>b*: 0.05</td>
<td>b*: -62.82</td>
</tr>
<tr>
<td>Flexographic Sample</td>
<td>L*: 53.83</td>
<td>L*: 46.78</td>
<td>L*: 87.9</td>
<td>L*: 67.35</td>
<td>L*: 55.93</td>
<td>L*: 22.76</td>
</tr>
<tr>
<td></td>
<td>a*: -36.73</td>
<td>a*: 75.96</td>
<td>a*: -5.23</td>
<td>a*: 52.20</td>
<td>a*: -76.89</td>
<td>a*: 49.69</td>
</tr>
<tr>
<td></td>
<td>b*: -47.57</td>
<td>b*: -0.95</td>
<td>b*: 99.24</td>
<td>b*: 78.77</td>
<td>b*: 38.97</td>
<td>b*: -60.75</td>
</tr>
<tr>
<td>Xerox iGen 5 Sample</td>
<td>L*: 57.41</td>
<td>L*: 45.21</td>
<td>L*: 86.56</td>
<td>L*: 62.05</td>
<td>L*: 59.91</td>
<td>L*: 19.92</td>
</tr>
<tr>
<td></td>
<td>a*: -19.64</td>
<td>a*: 72.38</td>
<td>a*: -3.48</td>
<td>a*: 58.86</td>
<td>a*: -73.75</td>
<td>a*: 20.58</td>
</tr>
<tr>
<td></td>
<td>b*: -46.54</td>
<td>b*: -9.74</td>
<td>b*: 85.70</td>
<td>b*: 79.02</td>
<td>b*: 16.55</td>
<td>b*: -57.55</td>
</tr>
<tr>
<td>Prüfbau Sample</td>
<td>L*: 43.19</td>
<td>L*: 41.50</td>
<td>L*: 85.40</td>
<td>L*: 64.33</td>
<td>L*: 53.03</td>
<td>L*: 15.14</td>
</tr>
<tr>
<td></td>
<td>a*: -25.69</td>
<td>a*: 77.3</td>
<td>a*: -4.83</td>
<td>a*: 60.25</td>
<td>a*: -84.93</td>
<td>a*: 45.96</td>
</tr>
<tr>
<td></td>
<td>b*: -60.29</td>
<td>b*: 14.91</td>
<td>b*: 107.49</td>
<td>b*: 91.60</td>
<td>b*: 3.99</td>
<td>b*: -53.52</td>
</tr>
</tbody>
</table>
GAMUT COMPARISON

Epson SureColor P9000 Vs GRACoL 2006 Coated

Flexography Sample Vs GRACoL 2006 Coated

Flexography Color Gamut in 3D Space
GAMUT COMPARISON CONT.

Heidelberg Offset Sample Vs GRACoL 2006 Coated

Xerox iGen 5 Sample Vs GRACoL 2006 Coated

Prüfbau Sample in 3D Space
RESULTS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Orange Hue angle</th>
<th>Green Hue angle</th>
<th>Violet Hue angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson SureColor P9000</td>
<td>35</td>
<td>173</td>
<td>318</td>
</tr>
<tr>
<td>Heidelberg Offset Sample</td>
<td>43</td>
<td>144</td>
<td>270</td>
</tr>
<tr>
<td>Flexographic Sample</td>
<td>44</td>
<td>140</td>
<td>298</td>
</tr>
<tr>
<td>Xerox iGen 5 Sample</td>
<td>36</td>
<td>160</td>
<td>284</td>
</tr>
<tr>
<td>Prüfbau Sample</td>
<td>46</td>
<td>154</td>
<td>308</td>
</tr>
<tr>
<td>PANTONE Standard</td>
<td>58</td>
<td>180</td>
<td>311</td>
</tr>
</tbody>
</table>
RESULTS CONT.

Extended Gamut Comparison across different printing processes

CMYK Gamut Comparison across different printing processes
We hypothesized that if we can achieve similar gamut volume across all printing processes, then we can output similar print using any printing process. However, in our test we were not able to control the substrate and the type of PANTONE ink used for the extended gamut sample across all printing processes.

Process Variation: Impact Vs Non Impact Printing

DISCUSSION

FACTORS AFFECTING GAMUT EXPANSION

1. Hue angle
 For any printing process to fall within the G7-ISO L*a*b* ink colour standards, the extended gamut ink (Orange Green and Violet) need to fall within the proper hue angle of the specifications (Baldwin, 2016).
 Should have a hue angle of 58 degree, 180 degree and 311 degree respectively, to accurately project the expansion of the colour gamut of the output device.

2. Chroma and Value
 Chroma relates to the amount of visual difference from the grey of same colour.
RECOMMENDATIONS

<table>
<thead>
<tr>
<th>PRINTABILITY</th>
<th>END USE</th>
<th>RUNABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In XG, seven inks are being printed rather than four - the sequence of</td>
<td>• Big in the packaging industry because of its added benefits of being</td>
<td>• Ink tack is a major component of the runability on the press - the</td>
</tr>
<tr>
<td>ink printed becomes more complex and varies between printing processes</td>
<td>cost efficient and producing accurate colours in a timely matter</td>
<td>stickiness of how ink adheres from one surface to another</td>
</tr>
<tr>
<td>• To optimize XG abilities printers need to be able to determine transparency</td>
<td>• Retain a consistent colour throughout the face of their company in</td>
<td>• Substrates are important - where the most optimal paper will have</td>
</tr>
<tr>
<td>of ink, in relation to overprints, to determine how colours are reproduced,</td>
<td>order to gain recognition of their brand</td>
<td>efficient paper strength to print accurate colours accordingly</td>
</tr>
<tr>
<td>and the most effective printing sequence</td>
<td>• More inexpensive and quality solution for the replication of accurate</td>
<td></td>
</tr>
<tr>
<td>• XG - 7 is known as mono-pigmented ink. For clients who request the</td>
<td>colours</td>
<td></td>
</tr>
<tr>
<td>printing of accurate colours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIAL THANKS

Dr. Abhay Sharma
M. Khaled Ahmed
Derek Estey
Dr. Reem El Asaleh
REFERENCES

REFERENCES

