
DRAFT: DRAFT: DRAFT:DRAFT:DRAFT
Changes from version 3.0 of June 1994 are indicated with bold typeface

Edited March 26, 1995

Revised May 8, 1995

International Color Consortium Profile Format
version 3.01

May 8, 1995

International Color Consortium Founding Members:
Adobe Systems Inc.
Agfa-Gevaert N.V.
Apple Computer, Inc.
Eastman Kodak Company
FOGRA (Honorary)
Microsoft Corporation
Silicon Graphics, Inc.
Sun Microsystems, Inc.
Taligent, Inc.

Other members:

Copyright Notice

Copyright (C) 1995 International Color Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of the Specification
and associated documentation files (the"Specification") to deal in the Specification without
restriction, including without limitation the rights to use, copy , modify, merge, publish, distribute,
and/or sublicense, copies of the Specification , and to permit persons to whom the Specification is
furnished to do so, subject to the following conditions.

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Specification.

The Specification is provided "as is", without warranty of any kind, express, implied, or
otherwise, including but not limited to the warranties of merchantability, fitness, for a particular
purpose and noninfringement. In no event shall the International Color Consortium be liable for
any claim, damges or other liability, whether in an action of contract, tort or otherwise, arising
from, out of, or in connection with the Specification or the use or other dealings in the
Specification.

Except as contained in this notice, the name of the International Color Consortium shall not be
used in advertising or otherwise to promote the use or other dealings in this Specification without
prior written authorization from the International Color Consortium.

For additional information on the ICC:

Todd Newman, Chairman International Color Consortium
Silicon Graphics, Inc
2011 N. Shoreline Blvd., MS 911
Mountain View, CA 94043

Phone: (415) 390-1614
Internet: tdn@sgi.com

Licenses and Trademarks

Apple is a registered trademark of Apple Computer, Inc.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we
are using the names only in an editorial fashion, andto the benefit of the trademark owner, with no
intention of infringement of the trademark.

Contents
1. Introduction

2. Summary

3. Device Profile Descriptions

4. Additional Profile Formats

5.Tag Descriptions

6. Tag Type Definitions

7. Basic Numeric Types

8. Tag Sequencing Requirements

9. Embedding Device Profiles within Documents

Appendix A: C Header File Example

Appendix B: 7 Bit ASCII

Appendix C: PostScript Level 2 Tags

Appendix D: Profile Connection Space Explanation

Appendix E: References

Index

1 Introduction
This specification describes the International Color Profile Format. The intent of this format is to
provide a cross-platform device profile format. Such device profiles can be used to translate color data
created on one device into another device’s native color space. The acceptance of this format by
operating system vendors allows end users to transparently move profiles and images with embedded
profiles between different operating systems. For example, this allows a printer manufacturer to create a
single profile for multiple operating systems.

A large number of companies and individuals from a variety of industries participated in very extensive
discussions on these issues. Many of these discussions occurred under the auspices of FOGRA, a
German graphic arts research institute during 1993. The present specification evolved from these
discussions and the ColorSync(tm) 1.0 profile format.

This is a very complex set of issues and the organization of this document strives to provide a clear,
clean, and unambiguous explanation of the entire format. To accomplish this, the overall presentation is
from a top-down perspective, beginning with a summary overview and continuing down into more
detailed specifications to a byte stream description of format.

2 Summary

2.1 Intended Audience

This specification is designed to provide developers and other interested parties a clear description of the
profile format. A nominal understanding of color science is assumed, such as familiarity with the
CIELAB color space, general knowledge of device characterizations and familiarity of at least one
operating system level color management system.

2.2 Organizational Description of This Specification

This specification is organized into a number of major sections and appendices. Each section and
subsection are numbered for easy reference. A brief introduction is followed by a detailed summary of
the issues involved in this document including, but not limited to; International Color Consortium,
device profiles, the profile connection space (PCS), tagged element structure, embedded profiles, profile
classifications, color transformations, and color model arbitration. The third section on device profile
descriptions provides a top level view of what tags are required for each type of profile classification
and a brief description of the algorithmic models associated with these classes. The fourth section
describes four additional color transformation formats; device link, color space conversion, abstract

transformations, and named color transforms. The fifth section is a detailed algorithmic and intent
description of all of the tagged elements described in the previous sections. The sixth section provides a
byte stream definition of the structures that make up the tags in section five. The seventh section
describes a collection of building block numeric types. The eighth section provides a detailed
description of the actual profile format and tag sequence along with a description of the profile header.
The ninth section describes the necessary details to embed profiles into PICT, TIFF, and EPS files.

Appendix A provides cross-platform ANSI-C compatible header file example for each of the device
profile and color transform formats. Appendix B specifies the 7-bit ASCII definition used in this
specification. Appendix C provides a general description of the ScriptCode definition. Appendix D is a
paper describing details of the profile connection space. Finally, appendix E provides a set of references
for this document.

2.3 International Color Consortium

Considering the potential impact of this standard on various industries, a consortium is being formed
that will administer this specification and the registration of tag signatures and descriptions. The
founding members of this consortium include; Adobe Systems Inc., Agfa-Gevaert N.V., Apple
Computer, Inc., Eastman Kodak Company, FOGRA (Honorary), Microsoft Corporation, Silicon
Graphics, Inc., Sun Microsystems, Inc., and Taligent, Inc.. These companies have committed to fully
support this specification in their operating systems, platforms and applications. In addition to these
founding members, other companies that commit to support this specification are invited to join.

2.4 Device Profiles

Device profiles provide color management systems with the information necessary to convert color data
between native device color spaces and device independent color spaces. This specification divides color
devices into three broad classifications: input devices, display devices and output devices. For each
device class, a series of base algorithmic models are described which performs the transformation
between color spaces. These models provide a range of color quality and performance results. Each of
the base models provides different trade-offs in memory footprint, performance and image quality. The
necessary parameter data to implement these models described in the required portions on the
appropriate device profile descriptions. This required data provides the information for the color
management framework default color management module (CMM) to transform color information
between native device color spaces. A representative architecture using these components is illustrated
in the diagram below.

2.5 Color Spaces

The International Color Consortium Profile Format supports a variety of both device-dependent and
device-independent color spaces divided into three basic families: 1) CIEXYZ based, 2) RGB based, and
3) CMY based. The CIE color spaces are defined in CIE publication 14.2 on Colorimetry. A subset of
the CIEXYZ based spaces are also defined as exchange spaces. The device dependent spaces below are
only representative and other device dependent color spaces may be used without needing to update the
profile format specification or the software that uses it.

CIEXYZ base CIE device-independent color space
 CIELAB

GRAY monochrome device-dependent color space

RGB base additive device-dependent color space
 HLS
 HSV

CMYK base subtractive device-dependent color space
 CMY

2.6 Profile Connection Spaces

A key component of these profiles is a well-defined profile connection space. This space is the interface
which provides an unambiguous connection between the input and output profiles as illustrated in the
diagram below. The profile connection space is based on the CIE 1931 standard observer. This
experimentally derived standard observer provides a very good representation of the human visual
system color matching capabilities. Unlike device dependent color spaces, if two colors have the same
CIE colorimetry they will match if viewed under the same conditions. Because the imagery is typically
produced for a wide variety of viewing environments, it is necessary to go beyond simple application of
the CIE system.

The profile connection space is defined as the CIE colorimetry which will produce the desired color
appearance if rendered on a reference imaging media and viewed in a reference viewing environment.
This reference corresponds to an ideal reflection print viewed in an ANSI standard viewing booth.
Profile builders should read the Appendix "Connection Color Space for the Standard Profile Format" for
further details.

The default measurement parameters for the profile connection space and all other color spaces defined
in this specification are based on the ANSI CGATS.5-1993 standard, "Graphic technology - Spectral
measurement and colorimetric computation for graphic arts images." Essentially this defines a standard
illuminant of D50, the 1931 CIE standard observer, and 0/45 or 45/0 reflectance measurement geometry.
The reference viewing condition is ANSI PH2.30-1989, which is a D50 graphic arts viewing
environment.

One of the first steps in profile building involves measuring the colorimetry of a set of colors from some
imaging media or display. If the imaging media or viewing environment differ from the reference, it will
be necessary to adapt the measured colorimetry to that appropriate for the profile connection space.
These adaptations account for such differences as white point chromaticity and luminance relative to an
ideal reflector, maximum density, viewing surround, viewing illuminant, and flare. Currently, it is the
responsibility of the profile builder to do this adaptation.

However, the possibility of allowing a variable illuminant in the PCS is under active consideration by
the International Color Consortium. For this reason, a PCS illuminant field is in the profile header, but
must be set to the CIE Illuminant D50 [X=0.9642, Y=1.0000, Z=0.8249].

The PCS is based on relative colorimetry. This is in comparison to absolute colorimetry. In absolute
colorimetry colors are represented with respect to the illuminant, for example D50. In relative
colorimetry, colors are represented with respect a combination of the illuminant and the media’s white,
e.g. unprinted paper. The translation from relative colorimetry XYZ data, XYZr to absolute colorimetric
data, XYZa, is given by

where XYZmw represents the media’s white and XYZi represents the illuminant white.

The actual media and actual viewing conditions will typically differ from the reference conditions. The
profile specification defines tags which provide information about the actual white point and black point
of a given media or display. These tags may be used by a CMM to provide functionality beyond that of
the default. For example, an advanced CMM could use the tags to adjust colorimetry based on the Dmin
of a specific media. A tag is also provided to describe the viewing environment. This information is
useful in choosing a profile appropriate for the intended viewing method.

There are many ways of encoding CIE colorimetry. This specification provides three methods in order to
satisfy conflicting requirements for accuracy and storage space. These encodings, an 8 bit/component
CIELAB encoding, a 16 bit/component CIELAB encoding, and a 16 bit/component CIEXYZ encoding
are described in the table below. The CIEXYZ space represents a linear transformation of the derived
matching responses and the CIELAB space represents a transformation of the CIEXYZ space into one
that is nearly perceptually uniform. This uniformness allows color errors to be equally weighted
throughout its domain. While supporting multiple CIE encodings increases the complexity of color
management, it provides immense flexibility in addressing different user requirements such as color
accuracy and memory footprint.

The encoding is such that:

Interchange Space Component Actual Range Encoded Range
CIE XYZ X 0 -> 1.99997 0x0000 -> 0xffff
CIE XYZ Y 0 -> 1.99997 0x0000 -> 0xffff
CIE XYZ Z 0 -> 1.99997 0x0000 -> 0xffff
CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xff00 *)
CIELAB (16 bit) a* -128.0 -> + 127.996 0x0000 -> 0xffff
CIELAB (16 bit) b* -128.0 -> + 127.996 0x0000 -> 0xffff
CIELAB (8 bit) L* 0 -> 100.0 0x00 -> 0xff
CIELAB (8 bit) a* -128.0 -> + 127.0 0x00 -> 0xff
CIELAB (8 bit) b* -128.0 -> + 127.0 0x00 -> 0xff

An important point to be made is that the PCS is not necessarily intended for the storage of images. A
separate series of "interchange color spaces" may be defined in a future version of this specification for
this purpose. The design choices made for these spaces (colorimetric encoding, reference media,
viewing conditions, etc.) might be different than that of the PCS.

2.7 Profile Element Structure

The profile structure is defined as a header followed by a tag table followed by a series of tagged
elements that can be accessed randomly and individually. This collection of tagged elements provides
three levels of information for developers: required data, optional data and private data. An element tag
table provides a table of contents for the tagging information in each individual profile. This table

includes a tag signature and the beginning address offset and size of the data for each individual tagged
element. Signatures in this specification are defined as a four byte hexadecimal number. This tagging
scheme allows developers to read in the element tag table and then randomly access and load into
memory only the information necessary to their particular software application. Since some instances of
profiles can be quite large, this provides significant savings in performance and memory. The detailed
descriptions of the tags, along with their intent are included later in this specification.

The required tags provide the complete set of information necessary for the default CMM to translate
color information between the profile connection space and the native device space. Each profile class
determines which combination of tags is required. For example, a three dimensional lookup table is
required for output devices, but not for display devices.

In addition to the required tags for each device profile, a number of optional tags are defined that can be
used for enhanced color transformations. Examples of these tags include PostScript Level 2 support,
calibration support, and others. In the case of required and optional tags, all of the signatures, an
algorithmic description and intent are registered with the International Color Consortium. Private data
tags allow CMM developers to add proprietary value to their profiles. By registering just the tag
signature and tag type signature, developers are assured of maintaining their proprietary advantages
while maintaining compatibility with the industry standard. However, the overall philosophy of this
format is to maintain an open, cross-platform standard, therefore the use of private tags should be kept to
an absolute minimum.

2.8 Embedded Profiles

In addition to providing a cross-platform standard for the actual disk-based profile format, this
specification also describes the convention for embedding these profiles within graphics documents and
images. Embedded profiles allow users to transparently move color data between different computers,
networks and even operating systems without having to worry if the necessary profiles are present on the
destination systems. The intention of embedded profiles is to allow the interpretation of the associated
color data. Embedding specifications are described in section 10 of this document.

2.9 Profile Classifications

As stated previously, there are three basic classifications of device profiles: input, display and output
profiles. Within each of these classes there can be a variety of subclasses, such as RGB scanners,
CMYK scanners and many others. These basic classes have the following signatures :

 ’scnr’ input devices such as scanners and digital cameras,
 ’mntr’ display devices such as CRTs and LCDs,
 ’prtr’ output devices such as printers.

In addition to the three basic device profile classes, three additional color processing profiles are
defined. These profiles provide a standard implementation for use by the CMM in general color
processing or for the convenience of CMMs which may use these types to store calculated transforms.
These three profile classes are: device link, color space conversion, and abstract profiles. Device link
profiles provide a mechanism in which to save and store a series of device profiles and non-device
profiles in a concatenated format as long as the series begins and ends with a device profile. This is
extremely useful for workflow issues where a combination of device profiles and non-device profiles are

used repeatedly. Color space conversion profiles are used as a convenient method for CMMs to convert
between different non-device color spaces. Finally, the abstract color profiles provide a generic method
for users to make subjective color changes to images or graphic objects by transforming the color data
within the PCS.

These profiles have the following signatures :

 ’link’ device link profiles,
 ’spac’ color space conversion profiles,
 ’abst’ abstract profiles.

2.10 PostScript Level 2 Tags

The PostScript Level 2 tags are provided in order to control exactly the PostScript Level 2 operations
that should occur for a given profile. These tags are only valid for PostScript Level 2 (and conceivably
future versions of PostScript) devices, and are not generally supported in PostScript Level 1 devices. In
addition, some of the tags may correspond to PostScript operations that are not supported in all
PostScript Level 2 devices. Using such tags requires first checking for the available operators. All
operators described in the PostScript Language Reference Manual, second edition, are available on all
PostScript Level 2 devices. Documentation for extensions to PostScript Level 2 are available through
Adobe’s Developer Support Organization. In addition, guidelines for PostScript compatibility with this
profile format are available. For details of such operator support, compatibility guidelines, the PostScript
Level 2 device independent color model, or other PostScript related issues contact Adobe’s Developer
Support Organization.

In general, there is a straightforward relationship between the profile’s header fields and tags, and these
PostScript tags. It is anticipated that the various CMSs that support this profile format will also provide
support for these optional PostScript tags. To verify such support contact the CMS vendors directly. In
cases where such support is provided, and the desired model of operations is the same for PostScript
processing as it is for CMS processing, these tags can be omitted, since all necessary information is in
the profile itself. In the case where such CMS support is in question or processing different than that
provided by an arbitrary CMS is desired, these tags can be populated to provide exact control over the
PostScript processing. For example, if private tags are used in the profile to achieve a non-public type of
processing on certain CMSs, such processing can be achieved on a PostScript device by populating the
appropriate PostScript tags.

Some of the PostScript tags have a tag type of dataType. This is to match the properties of the
communications channel to the data in these tags. Encoding binary data in dataType is recommended to
save memory and/or reduce transmission times. Applications and drivers may convert it to ASCII Coded
PostScript, Binary Coded PostScript, or Token Binary Coded PostScript or leave it in binary format to
match the requirements of the communications channel. Applications and drivers are responsible for this
potential conversion from binary data to channel compatible data. The data should be encoded as ASCII
in dataType in those cases where the amount of data is relatively small or where the conversion from
binary to channel compatible data is not available.

The PostScript contained in these tags is not self evaluating - it simply provides operands. These
operands must be followed by operators like setcolorspace, setcolorrendering, and findcolorrendering.

2.11 Redundant Data Arbitration

There are several methods of color rendering described in the following structures that can function
within a single CMM. If data for more than one method are included in the same profile, the following
selection algorithm should be used by the software implementation: if an 8 bit or 16 bit lookup table is
present, it should be used; if a lookup table is not present (and not required), the appropriate default
modeling parameters are used. These default parameters are described later in this document.

2.13 Fixed Point Math

Many of the tag types contain fixed point numbers. Several references can be found (Knuth’s
MetaFonts, etc.) illustrating the preferability of fixed point math to pure floating point math in very
structured circumstances.

2.14 Big-Endian Notation

All profile data must be encoded with the most significant byte first within the 16, 32, and 64 bit
quantities defined in the specification. This is commonly referred to as big-endian.

2.15 Rendering Intent

Rendering intent specifies the style of reproduction to be used during the evaluation of this profile in a
sequence of profiles. It applies specifically to that profile in the sequence and not to the entire sequence.
Typically, the user or application will set the rendering intent dynamically at runtime or embedding
time.

3 Device Profile Descriptions
This section provides a top level view of what tags are required for each type of profile classification
and a brief description of the algorithmic models associated with these classes. This begins with a
subsection describing common tags required of all three device profiles, followed by a general
description of each profile class and its required tags. A general description for each tag is included in
this section.

Note that these descriptions assume two things; every profile contains a header, and may include
additional tags beyond those listed as required in this section. The explicitly listed tags are those which
are required in order to comprise a legal profile of each type.

In general, multi-dimensional tables refer to lookup tables with more than one input component.

The intent of requiring tags with profiles is to provide a common base level of functionality. If a custom
CMM is not present, then the default CMM will have enough information to perform the requested color
transformations. The particular models implied by the required data are also described below. While this
data might not provide the highest level of quality obtainable with optional data and private data, the
data provided is adequate for sophisticated device modeling.

Profile Tag Name Interpretation

Input Profile AToB0Tag none
Display Profile AToB0Tag none
Output Profile BToA0Tag perceptual rendering
Output Profile BToA1Tag colorimetric rendering
Output Profile BToA2Tag saturation rendering
Input Profile grayTRCTag depends on intent
Display Profile grayTRCTag additive
Output Profile grayTRCTag subtractive

3.1 Input Profile

This profile represents input devices such as scanners and digital cameras.

3.1.1 Monochrome Input Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
grayTRCTag Gray tone reproduction curve (TRC)
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The mathematical model implied by this data is . This represents a simple tone
reproduction curve adequate for most monochrome input devices. The connection values in this equation
should represent the achromatic channel of the profile connection space. If the inverse of this is desired,
then the following equation is used,

Multidimensional tables are not allowed to be included in monochrome profiles.

3.1.2 RGB Input Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
redColorantTag Red colorant XYZ relative tristimulus values
greenColorantTag Green colorant XYZ relative tristimulus values
blueColorantTag Blue colorant XYZ relative tristimulus values
redTRCTag Red channel tone reproduction curve
greenTRCTag Green channel tone reproduction curve
blueTRCTag Blue channel tone reproduction curve
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The forward mathematical model implied by this data is :

.

This represents a simple linearization followed by a linear mixing model. The three tone reproduction
curves linearize the raw values with respect to the luminance (Y) dimension of the CIEXYZ encoding of
the profile connection space. The 3x3 matrix converts these linearized values into XYZ values for the
CIEXYZ encoding of the profile connection space. The inverse model is given by the following
equation,

Only the CIEXYZ encoding of the profile connection space can be used with matrix/TRC models. A
multidimensional table tag must be included if the CIELAB encoding of the profile connection space is
to be used.

3.1.3 CMYK Input Profiles

Tag Name General Description

profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
AToB0Tag Device to PCS: 8 or 16 bit data
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The AToB0Tag represents a device model described by the Lut8Type or Lut16Types. This tag provides
the parameter data for an algorithm that includes a set of non-interdependent per-channel tone
reproduction curves, a three dimensional lookup table and a set of non-interdependent per-channel
linearization curves. The mathematical model implied by this data is described in detail in sections 6.4
and 6.5 that specify the general lookup table tag element structures.

This profile type can be used with a printer for space optimized embedding.

3.2 Display Profile

This profile represents display devices such as monitors.

3.2.1 Monochrome Display Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display

grayTRCTag Gray tone reproduction curve
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The mathematical model implied by this data is This represents a simple tone
reproduction curve adequate for most monochrome input devices. The connection values in this equation
should represent the achromatic channel of the profile connection space. If the inverse of this is desired,
then the following equation is used,

Multidimensional tables are not allowed to be included in monochrome profiles.

3.2.2 RGB Display Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
versions of the profile name for display
redColorantTag Relative XYZ values of red phosphor
greenColorantTag Relative XYZ values of green phosphor
blueColorantTag Relative XYZ values of blue phosphor
redTRCTag Red channel tone reproduction curve
greenTRCTag Green channel tone reproduction curve
blueTRCTag Blue channel tone reproduction curve
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

This model is based on a three non-interdependent per-channel tone reproduction curves to convert
between linear and non-linear rgb values and a 3x3 matrix to convert between linear rgb values and
relative XYZ values. The mathematical model implied by this data is :

.

This represents a simple linearization followed by a linear mixing model. The three tone reproduction
curves linearize the raw values with respect to the luminance (Y) dimension of the CIEXYZ encoding of
the profile connection space. The 3x3 matrix converts these linearized values into XYZ values for the
CIEXYZ encoding of the profile connection space. The inverse model is given by the following
equation,

.

Only the CIEXYZ encoding of the profile connection space can be used with matrix/TRC models. A
multidimensional table tag must be included if the CIELAB encoding of the profile connection space is
to be used.

3.3 Output Profile

This profile represents output devices such as printers and film recorders. The LUT tags that are
required by the printer profiles contain either the 8 bit or the 16 bit LUTs as described in the LUT
tags. The LUT algorithm for profile connection space to device space transformations process data
sequentially through a matrix, input tables, a color LUT, and output tables.

3.3.1 Monochrome Output Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
grayTRCTag Gray tone reproduction curve
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The tone reproduction curve provides the necessary information to convert between a single device
channel and the CIEXYZ encoding of the profile connection space.

The mathematical model implied by this data is . This represents a simple tone
reproduction curve adequate for most monochrome input devices. The connection values in this equation
should represent the achromatic channel of the profile connection space. If the inverse of this is desired,
then the following equation is used, .

Multidimensional tables are not allowed to be included in monochrome profiles.

3.3.2 RGB and CMYK Output Profiles

Tag Name General Description
profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
AToB0Tag Device to PCS: 8 or 16 bit data: intent of 0
BToA0Tag PCS to Device space: 8 or 16 bit data: intent of 0
gamutTag Out of Gamut: 8 or 16 bit data
AToB1Tag Device to PCS: 8 or 16 bit data: intent of 1
BToA1Tag PCS to Device space: 8 or 16 bit data: intent of 1
AToB2Tag Device to PCS: 8 or 16 bit data: intent of 2
BToA2Tag PCS to Device space: 8 or 16 bit data: intent of 2
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

These tags represent a device model described by the Lut8Type or Lut16Types. The intent values
described in these tags directly correlate to the value of the rendering intent header flag of the source
profile in the color modeling session.

Rendering Intent Value

perceptual 0
relative colorimetric 1
saturation 2
absolute colorimetric 3

Each of the first three intents are associated with a specific tag. The fourth intent, absolute colorimetry,
is obtained by modifying the relative colorimetric intent tag based on the values which are in the
mediaWhitePointTag. It is permissible to reference the same tag for all of these intents and to use the
relative colorimetric intent tag when absolute colorimetry is specified. This decision is left to the profile
builder.

In essence, each of these tags provides the parameter data for an algorithm that includes a 3x3 matrix, a
set of non-interdependent per-channel tone reproduction curves, a three dimensional lookup table and a
set of non-interdependent per-channel linearization curves. The algorithmic details of this model and the
intent of each tag is given later in sections 6.4 and 6.5 that specify the general lookup table tag element
structures.

4 Additional Profile Formats
4.1 DeviceLink Profile

This profile represents a one-way link or connection between devices. It does not represent any device
model nor can it be embedded into images.

Tag Name General Description

profileDescriptionTag Structure containing invariant and
 localizable versions of the profile
 name for display
AToB0Tag Actual transformation parameter structure
 this is an exclusive or) 8 or 16 bit data
profileSequenceDescTag An array of descriptions of the profile
 sequence
copyrightTag 7 bit ASCII profile copyright information

The single AToB0Tag may contain any of the four possible rendering intents. The rendering
intent used is indicated in the header of the profile.

The AToB0Tag represents a device model described by the Lut8Type or Lut16Types. This tag provides
the parameter data for an algorithm that includes a 3x3 matrix, a set of non-interdependent per-channel
tone reproduction curves, a three dimensional lookup table and a set of non-interdependent per-channel
linearization curves. The algorithmic details of this model and the intent of each tag is given later in
sections 6.4 and 6.5 that specify the general lookup table tag element structures. This is a pre-evaluated
transform that cannot be undone.

The color space of data in the DeviceLink profile will be the same as the color space of data of the
first profile in the sequence. The profile connection space will be the same as the color space of
data of the last profile in the sequence.

4.2 ColorSpaceConversion Profile

This profile provides the relevant information to perform a color space transformation between the
non-device color spaces and the PCS. It does not represent any device model.

Tag Name General Description

profileDescriptionTag Structure containing invariant and
 localizable versions of the profile name
 for display
BToA0Tag Inverse transformation parameter structure
 (this is an exclusive or) 8 or 16 bit data
AToB0Tag Actual transformation parameter structure
 (this is an exclusive or) 8 or 16 bit data
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The AToB0Tag and BToA0Tag represent a model described by the Lut8Type or Lut16Types. This tag
provides the parameter data for an algorithm that includes a 3x3 matrix, a set of non-interdependent
per-channel tone reproduction curves, a three dimensional lookup table and a set of non-interdependent
per-channel linearization curves. The algorithmic details of this model and the intent of each tag is given
later in sections 6.4 and 6.5 that specify the general lookup table tag element structures.

4.3 Abstract Profile

This profile represents abstract transforms and does not represent any device model. Color
transformations using abstract profiles are performed from PCS to PCS.

Tag Name General Description

profileDescriptionTag Structure containing invariant and localizable
 versions of the profile name for display
AToB0Tag Actual transformation parameter structure
 (this is an exclusive or) 8 or 16 bit data
mediaWhitePointTag Media XYZ white point
copyrightTag 7 bit ASCII profile copyright information

The AToB0Tag represents a PCS to PCS model described by the Lut8Type or Lut16Types. This tag
provides the parameter data for an algorithm that includes a 3x3 matrix, a set of non-interdependent
per-channel tone reproduction curves, a three dimensional lookup table and a set of non-interdependent
per-channel linearization curves. The algorithmic details of this model and the intent of each tag is given
later in sections 6.4 and 6.5 that specify the general lookup table tag element structures.

5 Tag Descriptions
This section specifies the individual tags used to create all possible portable profiles in the International
Color Profile Format. The appropriate tag typing is indicated with each individual tag description. Note
that the signature indicates only the type of data and does not imply anything about the use or purpose
for which the data is intended.

In addition to the tags listed below, any of the previously defined tags in sections 3 and 4 on device
profiles can also be used as optional tags if they are not used in the required set for a particular profile.

Tag Name General Description

AToB0Tag Multidimensional transformation structure
AToB1Tag Multidimensional transformation structure
AToB2Tag Multidimensional transformation structure
blueColorantTag Relative XYZ values of blue phosphor
blueTRCTag Blue channel tone reproduction curve
BToA0Tag Multidimensional transformation structure
BToA1Tag Multidimensional transformation structure
BToA2Tag Multidimensional transformation structure
calibrationDateTimeTag Profile calibration date and time
charTargetTag Characterization target such as IT8/7.2
copyrightTag 7 bit ASCII profile copyright information
deviceMfgDescTag displayable description of device manufacturer
deviceModelDescTag displayable description of device model
gamutTag Out of Gamut : 8 or 16 bit data
grayTRCTag Gray tone reproduction curve
greenColorantTag Relative XYZ values of green phosphor
greenTRCTag Green channel tone reproduction curve
luminanceTag Absolute luminance for emissive device
measurementTag Alternative measurement specification information
mediaBlackPointTag Media XYZ black point
mediaWhitePointTag Media XYZ white point
namedColorTag Dictionary for converting between named colors and
 interchange or device color spaces
preview0Tag Preview transformation : 8 or 16 bit data
preview1Tag Preview transformation : 8 or 16 bit data
preview2Tag Preview transformation : 8 or 16 bit data
profileDescriptionTag profile description for display
profileSequenceDescTag profile sequence from source to destination
ps2CRD0Tag PostScript Level 2 color rendering dictionary: perceptual
ps2CRD1Tag PostScript Level 2 color rendering dictionary: colorimetric
ps2CRD2Tag PostScript Level 2 color rendering dictionary: saturation
ps2CRD3Tag PostScript Level 2 color rendering dictionary: absolute
ps2CSATag PostScript Level 2 color space array
ps2RenderingIntentTag PostScript Level 2 Rendering Intent
redColorantTag Relative XYZ values of red phosphor
redTRCTag Red channel tone reproduction curve
screeningDescTag Screening attributes description
screeningTag Screening attributes such as frequency, angle and spot
technologyTag Device technology information such as LCD, CRT,
 Dye Sublimation, etc.
ucrbgTag Under color removal curve
viewingCondDescTag Specifies viewing condition description
viewingConditionsTag Specifies viewing condition parameters

5.1 AToB0Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’A2B0’ 0x41324230

Device to PCS : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and 6.5.

5.2 AToB1Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’A2B1’ 0x41324231

Device to PCS : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and 6.5.

5.3 AToB2Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’A2B2’ 0x41324232

Device to PCS : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and 6.5.

5.4 blueColorantTag

Tag Type : XYZTypes
Tag Signature : ’bXYZ’ 0x6258595A

The relative XYZ values of blue phosphor or colorant.

5.5 blueTRCTag

Tag Type : curveType
Tag Signature : ’bTRC’ 0x62545243

Blue channel tone reproduction curve. The first element represents no colorant (white) or phosphors
(black) and the last element represents 100 percent colorant (blue) or 100 percent phosphor (blue).

The count value specifies the number of entries in the curve table except as follows:

when count is 0, then a linear response (slope equal to 1.0) is assumed,
when count is 1, the data entry is interpreted as a simple gamma value
 (ranging from 0 to 8 in fixed unsigned 8.8 format), and
when count is 2, the entries are intepreted as the beginning and end
 points of a line.

Gamma is interpreted canonically and NOT as an inverse.

5.6 BToA0Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’B2A0’ 0x42324130

PCS to Device space : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and
6.5.

5.7 BToA1Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’B2A1’ 0x42324131

PCS to Device space : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and
6.5.

5.8 BToA2Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’B2A2’ 0x42324132

PCS to Device space : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and
6.5.

5.9 calibrationDateTimeTag

Tag Type : dateTimeType
Tag Signature : ’calt’ 0x63616C74

Profile calibration date and time. Initially, this tag matches the contents of the creationDateTime header
flag. This allows applications and utilities to verify if this profile matches a vendor’s profile and how
recently calibration has been performed.

5.10 charTargetTag

Tag Type : textType
Tag Signature : ’targ’ 0x74617267

This tag contains the measurement data for a characterization target such as IT8.7/2. This tag is provided
so that distributed utilities can create transforms "on the fly" or check the current performance against
the original device performance. The tag embeds the exact data file format defined in the ANSI or ISO
standard which is applicable to the device being characterized.

Examples are the data formats described in ANSI IT8.7/1-1993 section 4.10, ANSI IT8.7/2-1993 section
4.10 and ANSI IT8.7/3 section 4.10. Each of these file formats contains an identifying character string
as the first few bytes of the format, allowing an external parser to determine which data file format is
being used. This provides the facilities to include a wide range of targets using a variety of measurement
specifications in a standard manner.

Note: The IT8 specifications do not currently have a keyword which identifies a data set as being
reference data as opposed to device response data. An addition to enable this additional data set is
being considered by the IT8 committee.

5.11 copyrightTag

Tag Type : textType
Tag Signature : ’cprt’ 0x63707274

This tag contains the 7 bit ASCII text copyright information for the profile.

5.12 deviceMfgDescTag

Tag Type : textDescriptionType
Tag Signature : ’dmnd’ 0x646D6E64

Structure containing invariant and localizable versions of the device manufacturer for display. The
content of this structure is described in section 6.9.

5.13 deviceModelDescTag

Tag Type : textDescriptionType
Tag Signature : ’dmdd’ 0x646D6464

Structure containing invariant and localizable versions of the device manufacturer for display. The
content of this structure is described in section 6.9.

5.14 gamutTag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’gamt’ 0x67616D74

Out of Gamut tag : 8 bit or 16 bit data. The processing mechanisms are described in sections 6.4 and 6.5.
The CLUT tag has a single output. If the output value value is 0, the input color is in gamut. If the
output is non zero, the input color is out of gamut,with the number "n+1" being at least as far out
of gamut than the number "n".

5.15 grayTRCTag

Tag Type : curveType
Tag Signature : ’kTRC’ 0x6B545243

Gray tone reproduction curve. The tone reproduction curve provides the necessary information to
convert between a single device channel and the CIEXYZ encoding of the profile connection space. The
first element represents no colorant (white) or phosphors (black) and the last element represents 100
percent colorant (black) or 100 percent phosphor (white).

The count value specifies the number of entries in the curve table except as

follows:
when count is 0, then a linear response (slope equal to 1.0) is assumed,
when count is 1, then the data entry is interpreted as a simple gamma value

 (ranging from 0 to 8 in fixed unsigned 8.8 format), and
when count is 2, the entries are intepreted as the beginning and end points of
 a line.

Gamma is interpreted canonically and NOT as an inverse.

5.16 greenColorantTag

Tag Type : XYZType
Tag Signature : ’gXYZ’ 0x6758595A

Relative XYZ values of green phosphor or colorant.

5.17 greenTRCTag

Tag Type : curveType
Tag Signature : ’gTRC’ 0x67545243

Green channel tone reproduction curve. The first element represents no colorant (white) or phosphors
(black) and the last element represents 100 percent colorant (green) or 100 percent phosphor (green).

The count value specifies the number of entries in the curve table except as follows:

when count is 0, then a linear response (slope equal to 1.0) is assumed,
when count is 1, then the data entry is interpreted as a simple gamma value
 (ranging from 0 to 8 in fixed unsigned 8.8 format), and
when count is 2, the entries are intepreted as the beginning and end points
 of a line.

Gamma is interpreted canonically and NOT as an inverse.

5.18 luminanceTag

Tag Types : XYZType
Tag Signature : ’lumi’ 0x6C756D69

The absolute luminance of devices is in candelas per meter squared as described by the Y channel.
The X and Z channels are ignored in all cases.

5.19 measurementTag

Tag Type : measurementType
Tag Signature : ’meas’ 0x6D656173

Alternative measurement specification such as a D65 illuminant instead of the default D50.

5.20 mediaBlackPointTag

Tag Type : XYZType
Tag Signature : ’bkpt’ 0x626b7074

This tag specifies the media black point and is used for generating absolute colorimetry. It is referenced
to the profile connection space. If this tag is not present, it is assumed to be (0,0,0).

5.21 mediaWhitePointTag

Tag Type : XYZType
Tag Signature : ’wtpt’ 0x77747074

This tag specifies the media white point and is used for generating absolute colorimetry. It is referenced
to the profile connection space. If this tag is not present, it is assumed to be the same as the illuminant in
the header.

5.22 namedColorTag

Tag Type : namedColorType
Tag Signature : ’ncol’ 0x6E636F6C

Named color reference transformation for converting between named color sets and the profile
connection space or device color spaces.

5.23 preview0Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’pre0’ 0x70726530

Preview transformation from PCS to device space and back to the PCS : 8 bit or16 bit data. The
processing mechanisms are described in sections 6.4 and 6.5.

5.24 preview1Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’pre1’ 0x70726531

Preview transformation from the PCS to device space and back to the PCS : 8 bit or 16 bit data. The
processing mechanisms are described in sections 6.4 and 6.5.

5.25 preview2Tag

Tag Types : lut8Type xor lut16Type
Tag Signature : ’pre2’ 0x70726532

Preview transformation from PCS to device space and back to the PCS : 8 bit or 16 bit data. The
processing mechanisms are described in sections 6.4 and 6.5.

5.26 profileDescriptionTag

Tag Type : textDescriptionType
Tag Signature : ’desc’ 0x64657363

Structure containing invariant and localizable versions of the profile description for display. This content
of this structure is described in section 6.9. This invariant description has no fixed relationship to the
actual profile disk file name.

5.27 profileSequenceDescTag

Tag Type : profileSequenceDescType
Tag Signature : ’pseq’ 0x70736571

Structure containing a description of the profile sequence from source to destination, typically used with
the devicelink profile. This content of this structure is described in section 6.8.

5.28 ps2CRD0Tag

Tag Type : dataType
Tag Signature : ’psd0’ 0x70736430

PostScript Level 2 Type 1 color rendering dictionary (CRD) for the Perceptual rendering intent. This tag
provides the dictionary operand to the setcolorrendering operator. This tag can be used in conjunction
with the setcolorrendering operator on any PostScript Level 2 device.

See section 2.10 for the relationship between ICC profile data and PostScript Tags.

5.29 ps2CRD1Tag

Tag Type : dataType
Tag Signature : ’psd1’ 0x70736431

PostScript Level 2 Type 1 CRD for the RelativeColorimetric rendering intent. This tag provides the
dictionary operand to the setcolorrendering operator. This tag can be used in conjunction with the
setcolorrendering operator on any PostScript Level 2 device.

See section 2.10 for the relationship between ICC profile data and PostScript Tags.

5.30 ps2CRD2Tag

Tag Type : dataType

Tag Signature : ’psd2’ 0x70736432

PostScript Level 2 Type 1 CRD for the Saturation rendering intent. This tag provides the dictionary
operand to the setcolorrendering operator. This tag can be used in conjunction with the setcolorrendering
operator on any PostScript Level 2 device.

See section 2.10 for the relationship between ICC profile data and PostScript Tags.

5.31 ps2CRD3Tag

Tag Type : dataType
Tag Signature : ’psd3’ 0x70736433

PostScript Level 2 Type 1 CRD for the AbsoluteColorimetric rendering intent. This tag provides the
dictionary operand to the setcolorrendering operator. This tag can be used in conjunction with the
setcolorrendering operator on any PostScript Level 2 device.

See section 2.10 for the relationship between ICC profile data and PostScript Tags.

5.32 ps2CSATag

Tag Type : dataType
Tag Signature : ’ps2s’ 0x70733273

PostScript Level 2 color space array. This tag provides the array operand to the setcolorspace operator.
For color spaces that fit within the original PostScript Level 2 device independent color model no
operator verification need be performed. For color spaces that fit only within extensions to this model,
operator verification is first required. An example of this would be for Calibrated CMYK input color
spaces which are supported via an extension. In such cases where the necessary PostScript Level 2
support is not available,PostScript Level 1 color spaces, such as DeviceCMYK, can be used, or the
colors can be converted on the host using a CMS. In the latter case, the PostScript Level 1 color
operators are used to specify the device dependent (pre-converted) colors. The PostScript contained in
this tag expects the associated color values instantiated either through setcolor or image to be inthe range
[0, 1].

See section 2.10 for the relationship between ICC profile data and PostScriptTags.

5.33 ps2RenderingIntentTag

Tag Type : dataType

Tag Signature : ’ps2i’ 0x70733269

PostScript Level 2 rendering intent. This tag provides the operand to the findcolorrendering operator.
findcolorrendering is not necessarily supported on all PostScript Level 2 devices, hence its existence
must first be established. Standard values for ps2RenderingIntentTag are RelativeColorimetric,

AbsoluteColorimetric, Perceptual, and Saturation. These intents are meant to correspond to the
rendering intents of the profile’s header.

See section 2.10 for the relationship between ICC profile data and PostScript Tags.

5.34 redColorantTag

Tag Type : XYZType
Tag Signature : ’rXYZ’ 0x7258595A

Relative XYZ values of red phosphor or colorant.

5.35 redTRCTag

Tag Type : curveType
Tag Signature : ’rTRC’ 0x72545243

Red channel tone reproduction curve. The first element represents no colorant (white) or phosphors
(black) and the last element represents 100 percent colorant (red) or 100 percent phosphor (red).

The count value specifies the number of entries in the curve table except as follows:

when count is 0, then a linear response (slope equal to 1.0) is assumed,
when count is 1, then the data entry is interpreted as a simple gamma value
 (ranging from 0 to 8 in fixed unsigned 8.8 format), and
when count is 2, the entries are intepreted as the beginning and end points of
 a line.

Gamma is interpreted canonically and NOT as an inverse.

5.36 screeningDescTag

Tag Type : textDescriptionType
Tag Signature : ’scrd’ 0x73637264

Structure containing invariant and localizable versions of the screening conditions. This content of this
structure is described in section 6.9.

5.37 screeningTag

Tag Type : screeningType
Tag Signature : ’scrn’ 0x7363726E

This tag contains screening information for a variable number of channels.

5.38 technologyTag

Tag Type : signatureType
Tag Signature : ’tech’ 0x74656368

Device technology information such as CRT, Dye Sublimation, etc.

The encoding is such that :

Technology signature hex signature

Film Scanner ’fscn’ 0x6673636E
Reflective Scanner ’rscn’ 0x7273636E
Ink Jet Printer ’ijet’ 0x696A6574
Thermal Wax Printer ’twax’ 0x74776178
Electrophotographic Printer ’epho’ 0x6570686F
Electrostatic Printer ’esta’ 0x65737461
Dye Sublimation Printer ’dsub’ 0x64737562
Photographic Paper Printer ’rpho’ 0x7270686F
Film Writer ’fprn’ 0x6670726E
Video Monitor ’vidm’ 0x76696460
Video Camera ’vidc’ 0x76696463
Projection Television ’pjtv’ 0x706A7476
Cathode Ray Tube Display ’CRT ’ 0x43525420
Passive Matrix Display ’PMD ’ 0x504D4420
Active Matrix Display ’AMD ’ 0x414D4420
Photo CD ’KPCD’ 0x4B504344
PhotoImageSetter ’imgs’ 0x696D6773
Gravure ’grav’ 0x67726176
Offset Lithography ’offs’ 0x6F666673
Silkscreen ’silk’ 0x73696C6B
Flexography ’flex’ 0x666C6578

5.39 ucrbgTag

Tag Type : ucrbgType
Tag Signature : ’bfd ’ 0x62666420

Under color removal and black generation specification. This tag contains curve information for both
under color removal and black generation in addition to a general description. This content of this
structure is described in section 6.15.

5.40 viewingCondDescTag

Tag Type : textDescriptionType
Tag Signature : ’vued’ 0x76756564

Structure containing invariant and localizable versions of the viewing conditions. This content of this
structure is described in section 6.9.

5.41 viewingConditionsTag

Tag Type : viewingConditionsType
Tag Signature : ’view’ 0x76696577

Viewing conditions parameters.

6 Tag Type Definitions
This section specifies the type and structure definitions used to create all of the individual tagged
elements in International Color Profile Format. The data type description identifiers are indicated at the
right margin of each data or structure definition. An effort was made to make sure one-byte, two-byte
and four-byte data lies on one-byte, two-byte and four-byte boundaries respectively. This required
occasionally including extra spaces indicated with "reserved for padding" in some tag type definitions.
Value 0 is defined to be of "unknown value" for all enumerated data structures.

All tags, including private tags, have as their first four bytes (0-3) a tag signature (a 4 byte character
sequence) to identify to profile readers what kind of data is contained within a tag. This encourages tag
type reuse and allows profile parsers to reuse code when tags use common tag types. The second four
bytes (4-7) are reserved for future expansion and must be set to 0 in this version of the specification.
Each new tag signature and tag type signature must be registered with the International Color
Consortium in order to prevent signature collisions.

Where not specified otherwise, the low 16 bits of all 32 bit flags in the type descriptions below are
reserved for use by the International Color Consortium.

When 7 bit ASCII text representation is specified in types below, each individual character is encoded in
8 bits with the high bit set to zero. The details are presented in Appendix B.

6.1 curveType

The curveType contains a 4 byte count value and a one-dimensional table of 2 byte values. The byte
stream is given below.

byte(s) content

0-3 ’curv’ (0x63757276) type descriptor
4-7 reserved, must be set to 0
8-11 count value specifying number of entries that follow
12-end actual curve values starting with the zeroth entry and ending
 with the entry count-1.

Unless otherwise specified (see sections 5.5, 5.15, 5.17, 5.35) curve values are in the range [0.0, 1.0].
These 16 bit unsigned integers in the range 0 to 216 - 1 (65535) linearly map to curve values in the

interval [0.0, 1.0] .

6.2 dataType

The dataType is a simple data containing structure that contains either 7 bit ASCII or binary data, i.e..
textType data or transparent 8-bit bytes. The length of the string can easily be obtained from the element
size portion of the tag itself. If this type is used for ASCII data, it must be terminated with a 0x00 byte.

byte(s) content

0-3 ’data’ (0x64617461) type descriptor
4-7 reserved, must be set to 0
8-11 data flag, 0x00000000 represents ASCII data, 0x00000001 represents
 binary data, other values are reserved for future use
12-n a string of count ASCII characters or count bytes (where count is
 derived from the element size portion of the tag itself

6.3 dateTimeType

This dateTimeType is a 12 byte value representation of the time and date. The actual values are encoded
as a dateTimeNumber described in section 7.

byte(s) content Encoded As...

0-3 ’dtim’ (0x6474696D) type descriptor
4-7 reserved, must be set to 0
8-19 date and time dateTimeNumber

6.4 lut16Type

This structure converts an input color into an output color using tables with 16 bit precision. This type
contains four processing elements: a 3 by 3 matrix (only used when the input color space has three
components), a set of one dimensional input lookup tables, a multidimensional lookup table, and a set of
one dimensional output tables. Data is processed using these elements via the following sequence:

(matrix) -> (1d input tables) -> (multidimensional lookup table) -> (1d output tables).

++++++

byte(s) content Encoded As...

0-3 ’mft2’ (0x6D667432)
 [multi-function table with 2 byte
 precision] type descriptor
4-7 reserved, must be set to 0

8 Number of Input Channels uInt8Number
9 Number of Output Channels uInt8Number
10 Number of CLUT grid points (identical uInt8Number
 for each side)
11 Reserved for padding (required to be 0x00)
12-15 Encoded e00 parameter s15Fixed16Number
16-19 Encoded e01 parameter s15Fixed16Number
20-23 Encoded e02 parameter s15Fixed16Number
24-27 Encoded e10 parameter s15Fixed16Number
28-31 Encoded e11 parameter s15Fixed16Number
32-35 Encoded e12 parameter s15Fixed16Number
36-39 Encoded e20 parameter s15Fixed16Number
40-43 Encoded e21 parameter s15Fixed16Number
44-47 Encoded e22 parameter s15Fixed16Number
48-49 Number of input table entries uInt16Number
50-51 Number of output table entries uInt16Number
52-n input tables
n+1-m CLUT values
m+1-o output tables
+++++

The input, output and CLUT tables are arrays of 16 bit unsigned values. Each input table consists of a
minimum of two and a maximum of 4096 two byte integers. Each input table entry is appropriately
normalized to the range 0-65535. The inputTable is of size InputChannels * inputTableEntries * 2 bytes.
When stored in this tag, the one-dimensional lookup tables are assumed to be packed one after another
in the order described below.

The matrix is organized as an 3 by 3 array. The dimension corresponding to the matrix rows varies least
rapidly and the dimension corresponding to the matrix columns varies most rapidly and is shown in
matrixform below. Each matrix entry is a four byte number with one sign bit, 15 integer bits, and 16
fractional bits.

When using the matrix of an output profile, and the input data is XYZ, we have

Each input X, Y or Z is an unsigned 1.15 number and each matrix entry is a signed 15.16 number.
Therefore, each multiplication in the matrix multiply is 1.15 * s15.16 = s16.31 and the final sum is also
s16.31. From this sum we take bits 31-16 as the unsigned integer result for X’, Y’, or Z’. These are then
used as the inputs to the input tables of the multidimensionalLUT. This normalization is used since the
number of fractional bits in the input data must be maintained by the matrix operation.

The matrix is mandated to be an identity matrix unless the input to the matrix is in the XYZ color
space.

Each CLUT is organized as an n-dimensional array with a given number of grid points in each
dimension, where n is the number of input channels(input tables) in the transform. The dimension

corresponding to the first input channel varies least rapidly and the dimension corresponding to the last
input channel varies most rapidly. Each grid point value contains m two byte integers, where m is the
number of output functions. The first sequential two byte integer of the entry contains the function value
for the first output function, the second sequential two byte integer of the entry contains the function
value for the second output function, and so on until all the output functions have been supplied. The
equation for computing the size of the CLUT is :

Each output table consists of a minimum of two and a maximum of 4096 two byte integers. The
outputTable is of size OutputChannels * outputTableEntries * 2 bytes. When stored in this tag, the
one-dimensional lookup tables are assumed to be packed one after another in the order described in the
following paragraph.

When using this type, it is necessary to assign each color space component to an input and output
channel. The following table shows these assignments. The channels are numbered according to the
order in which their table occurs. Note that additional color spaces can be added simply by defining the
signature, channel assignments, and creating the tables.

Color Space Channel 1 Channel 2 Channel 3 Channel 4

’XYZ’ X Y Z
’Lab’ L a b
’Luv’ L u v
’YCbr’ Y Cb Cr
’Yxy’ Y x y
’RGB’ R G B
’GRAY’ K
’HSV’ H S V
’HLS’ H L S
’CMYK’ C M Y K
’CMY’ C M Y

6.5 lut8Type

This structure converts an input color into an output color using tables of 8 bit precision. This type
contains four processing elements: a 3 by 3 matrix (only used when the input color space has three
components), a set of one dimensional input lookup tables, a multidimensional lookup table, and a set of
one dimensional output tables. Data is processed using these elements via the following sequence:

(matrix) -> (1d input tables) -> (multidimensional lookup table) -> (1d output tables).

byte(s) content Encoded As...
0-3 ’mft1’ (0x6D667431) [multi-function
 table with 1 byte precision] type
 descriptor
4-7 reserved, must be set to 0
8 Number of Input Channels uInt8Number
9 Number of Output Channels uInt8Number
10 Number of CLUT grid points (identical

 for each side) uInt8Number

11 Reserved for padding (fill with 0x00)
12-15 Encoded e00 parameter s15Fixed16Number
16-19 Encoded e01 parameter s15Fixed16Number
20-23 Encoded e02 parameter s15Fixed16Number
24-27 Encoded e10 parameter s15Fixed16Number
28-31 Encoded e11 parameter s15Fixed16Number
32-35 Encoded e12 parameter s15Fixed16Number
40-43 Encoded e21 parameter s15Fixed16Number
44-47 Encoded e22 parameter s15Fixed16Number
48-m input tables
m+1-n CLUT values
n+1-o output tablesss

The input, output and CLUT tables are arrays of 8 bit unsigned values. Each input table consists of 256
one byte integers. Each input table entry is appropriately normalized to the range 0-255. The inputTable
is of size InputChannels * 256 bytes. When stored in this tag, the one-dimensional lookup tables are
assumed to be packed one after another in the order described below.

The matrix is organized as a 3 by 3 array. The dimension corresponding to the matrix rows varies least
rapidly and the dimension corresponding to the matrix columns varies most rapidly and is shown in
matrix form below.

When using the matrix of an output profile, and the input data is XYZ, we have

Each input X, Y or Z is an unsigned 1.15 number and each matrix entry is a signed 15.16 number.
Therefore, each multiplication in the matrix multiply is 1.15 * s15.16 = s16.31 and the final sum is also
s16.31. From this sum we take bits 31-16 as the unsigned integer result for X’, Y’, or Z’. These are then
scaled to the range 0-255 and used as the inputs to the input tables of the multidimensional LUT. This
normalization is used since the number of fractional bits in the input data must be maintained by the
matrix operation.

The matrix is mandated to be an identity matrix unless the input to the matrix is in the XYZ color
space.

Each CLUT is organized as an n-dimensional array with a variable number of grid points in each
dimension, where n is the number of input channels(input tables) in the transform. The dimension
corresponding to the first input channel varies least rapidly and the dimension corresponding to the last
input channel varies most rapidly. Each grid point value is an m-byte array. The first sequential byte of
the entry contains the function value for the first output function, the second sequential byte of the entry
contains the function value for the second output function, and so on until all the output functions have
been supplied. The equation for computing the size of the CLUT is :

Each output table consists of 256 one byte integers. The outputTable is of size OutputChannels * 256
bytes. When stored in this tag, the one-dimensional lookup tables are assumed to be packed one after
another in the order described in the following paragraph.

When using this type, it is necessary to assign each color space component to an input and output
channel. The following table shows these assignments. The channels are numbered according to the
order in which their table occurs. Note that additional color spaces can be added simply by defining the
signature, channel assignments, and creating the tables.

Color Space Channel 1 Channel 2 Channel 3 Channel 4

’XYZ’ X Y Z
’Lab’ L a b
’Luv’ L u v
’Yxy’ Y x y
’YCbr’ Y Cb Cr
’RGB’ R G B
’GRAY’ K
’HSV’ H S V
’HLS’ H L S
’CMYK’ C M Y K
’CMY’ C M Y

6.6 measurementType

The measurementType information refers only to the internal profile data and is meant to provide profile
makers an alternative to the default measurement specifications.

byte(s) content Encoded As...

0-3 ’meas’ (0x6D656173) type descriptor
4-7 reserved, must be set to 0
8-11 encoded value for standard observer see below
12-23 encoded XYZ tristimulus values for measurement backing XYZNumber
24-27 encoded value for measurement geometry see below
28-31 encoded value for measurement flare see below
32-35 encoded value for standard illuminant see below

The encoding for the standard observer field is such that:

Standard Observer Encoded Value

unknown 0x00000000
1931 2 degree Observer 0x00000001
1964 10 degree Observer 0x00000002

The encoding for the measurement geometry field is such that:

Geometry Encoded Value

unknown 0x00000000
0/45 or 45/0 0x00000001
0/d or d/0 0x00000002

The encoding for the measurement flare value is such that:

Tristimulus Value Encoded Value

0 (0 %) 0x00000000
1.0 (or 100 %) 0x00010000

The encoding for the standard illuminant field is such that:

Standard Illuminant Encoded Value

unknown 0x00000000
D50 0x00000001
D65 0x00000002
D93 0x00000003
F2 0x00000004
D55 0x00000005
A 0x00000006
Equi-Power (E) 0x00000007
F8 0x00000008

6.7 namedColorType

This namedColorType is a count value and array of structures that provide color coordinates for 7 bit
ASCII color names. This provides users the ability to create a logo color dictionary between a named
color set and a space color specification. The color space is identified by the "color space of data" field
of the profile header. In order to maintain maximum portability it is strongly recommended that special
characters of the 7 bit ASCII set not be used.

byte(s) content Encoded As...
0-3 ’ncol’ (0x6E636F6C) type descriptor
4-7 reserved, must be set to 0
8-11 vender specific flag (lower 16 bits reserved
 for Consortium use)
12-15 count of named colors uInt32Number
15-t prefix for each color name (maximum of 32 bytes) 7 bit ASCII, 0 term i
t+1-u suffix for each color name (maximum of 32 bytes) 7 bit ASCII, 0 term i
u+1-v first color root name (maximum of 32 bytes) 7 bit ASCII, 0 term i
v+1-w first name’s color coordinates. Color space
 of data
w+1-x second color root name (maximum of 32 bytes) 7 bit ASCII, 0 term i
x+1-y second name’s color coordinates. Color space
 of data
y+1-z the remaining count-2 name structures as described
 in the first two name structures (assuming count > 2)

6.8 profileSequenceDescType

This type is an array of structures, each of which contains information from the header fields and tags
from the original profiles which were combined to create the final profile. The order of the structures is
the order in which the profiles were combined and includes a structure for the final profile. This
provides a description of the profile sequence from source to destination, typically used with the
devicelink profile.

byte(s) content

0-3 ’pseq’ (0x70736571) type descriptor
4-7 reserved, must be set to 0
8-11 count value specifying number of description structures in the array
12-m ’count’ profile description structures

Each profile description structure has the format:

byte(s) content

0-3 Device manufacturer signature (from corresponding profile’s header)
4-7 Device model signature (from corresponding profile’s header
8-15 Device attributes (from corresponding profile’s header)
16-19 Device technology information such as CRT, Dye Sublimation, etc
(corresponding profile’s technologyTag)
20-m displayable description of device manufacturer (corresponding
 profile’s deviceMfgDescTag)
m+1-n displayable description of device model (corresponding profile’s deviceModel D

If the deviceMfgDescTag and/or deviceModelDescTag is not present in a component profile, then
a "placeholder" tag should be inserted. This tag should have 1 in the ASCII count field and a
terminating null in the ASCII invariant profile description and zeros in its UniCode and
ScriptCode count and code fields.

Also note that the entire tag, include the tag type, should be stored.

6.9 textDescriptionType

The textDescriptionType is a complex structure that contains three types of text description structures: 7
bit ASCII, Unicode and ScriptCode. Since no single standard method for specifying localizable
character sets exists across the major platform vendors, including all three provides access for the major
operating systems. The 7 bit ASCII description is to be an invariant, nonlocalizable name for consistent
reference. It is preferred that both the Unicode and ScriptCode structures be properly localized.

The localized MacIntosh profile description contains 67 bytes of data, of which at most ’count’
bytes contain a ScriptCode string, including nullterminator. The ’count’ cannot be greater than
67.

The count field for each types are defined as follows:

ASCII: The count is the length of the string in bytes including the terminating null.

Unicode: The count is the number of characters including a Unicode null where a character is
always two bytes.

ScriptCode: The count is the length of the string in bytes including the terminating null.

If both Unicode and ScriptCode structures cannot be localized, then the follow guidelines should be
used. If Unicode is not native on the platform, then the Unicode should be filled in as 0 and ASCII data
inserted in the text field. If the ScriptCode is not native on the platform, then the ScriptCode should be
filled in as 0 and the ASCII data inserted in the text field.

byte(s) content

0-3 ’desc’ (0x64657363) type descriptor
4-7 reserved, must be set to 0
8-11 7 bit ASCII invariant Profile description count, including
 terminating null (description length)
12-n-1 7 bit ASCII invariant Profile description
n-n+3 Unicode language code
n+4-n+7 Unicode localizable Profile description count (description length)
n+8-m-1 Unicode localizable Profile description
m-m+1 ScriptCode code
m+2 Localizable Macintosh Profile description count (description length)
m+3-m+69 Localizable Macintosh Profile description

6.10 s15Fixed16ArrayType

This type represents an array of generic 4 byte/32 bit fixed point quantity. The number of values is
determined from the size of the tag.

byte(s) contents

0-3 ’sf32’ (0x73663332) type descriptor
4-7 reserved, must be set to 0
8-n an array of s15Fixed16Number values
6.11 screeningType

The screeningType describes various screening parameters including screen frequency, screening angle,
and spot shape.

byte(s) content Encoded As...

0-3 ’scrn’ (0x7363726E) type descriptor
4-7 reserved, must be set to 0
8-11 screening flag
12-15 number of channels
16-19 channel #1 frequency s15Fixed16Number

20-23 channel #1 screen angle s15Fixed16Number
24-27 channel #1 spot shape see below
28-n frequency, screen angle and spot shape for
 additional channels

Flag encoding is such that:

Attribute bit position

Use Printer Default Screens (true is 1) 0
Lines/Inch (on is 1) or Lines/cm (off is 0) 1

Spot function encoding is such that:

Spot Function Value Encoded Value

unknown 0
printer default 1
round 2
diamond 3
ellipse 4
line 5
square 6
cross 7

6.12 signatureType

The signatureType contains a four byte sequence used for signatures. Typically this type is used for tags
that need to be registered and can be displayed on many development systems as a sequence of four
characters. Sequences of less than four characters are padded at the end with spaces.

byte(s) content

0-3 ’sig ’ (0x73696720) type descriptor
4-7 reserved, must be set to 0
8-11 four byte signature

6.13 textType

The textType is a simple text structure that contains a 7 bit ASCII text string. The length of the string
can easily be obtained from the element sizeportion of the tag itself. This string must be terminated with
a 0x00 byte.

byte(s) content

0-3 ’text’ (0x74657874) type descriptor
4-7 reserved, must be set to 0
8-n a string of count ASCII characters (where count is derived from the
 element size portion of the tag itself)

6.14 u16Fixed16ArrayType

This type represents an array of generic 4 byte/32 bit quantity. The number of values is determined from
the size of the tag.

byte(s) content

0-3 ’uf32’ (0x75663332) type descriptor
4-7 reserved, must be set to 0
8-n an array of u16Fixed16Number values

6.15 ucrbgType

This type contains curves representing the under color removal and black generation and a text string
which is a general description of the method used for the ucr/bg.

byte(s) content

0-3 ’bfd ’ (0x62666420) type descriptor
4-7 reserved, must be set to 0
8-11 count value specifying number of entries in the ucr curve
12-m actual ucr curve values starting with the zeroth entry and ending with
 the entry count-1. Each value is a uInt16Number. If the count is 1, the
 value is a percent.
m+1 - n count value specifying number of entries in the bg curve
n+1 - o actual bg curve values starting with the zeroth entry and ending with
 the entry count-1. Each value is a uInt16Number. If the count is 1, the
 value is a percent.
o+1 - p a string of ASCII characters, with a null terminator.

6.16 uInt16ArrayType

This type represents an array of generic 2 byte/16 bit quantity. The number of values is determined from
the size of the tag.

byte(s) content

0-3 ’ui16’ (0x75693136) type descriptor
4-7 reserved, must be set to 0
8-n an array of unsigned 16 bit integers

6.17 uInt32ArrayType

This type represents an array of generic 4 byte/32 bit quantity. The number of values is determined from
the size of the tag.

byte(s) content

0-3 ’ui32’ (0x75693332) type descriptor
4-7 reserved, must be set to 0
8-n an array of unsigned 32 bit integers

6.18 uInt64ArrayType

This type represents an array of generic 8 byte/64 bit quantity. The number of values is determined from
the size of the tag.

byte(s) content

0-3 ’ui64’ (0x75693634) type descriptor
4-7 reserved, must be set to 0
8-n an array of unsigned 64 bit integers

6.19 uInt8ArrayType
This type represents an array of generic 1 byte/8 bit quantity. The number of
values is determined from the size of the tag.

byte(s) content

0-3 ’ui08’ (0x75693038) type descriptor
4-7 reserved, must be set to 0
8-n an array of unsigned 8 bit integers

6.20 viewingConditionsType

This type represents a set of viewing condition parameters including: absolute illuminant white point
tristimulus values and absolute surround tristimulus values.

byte(s) content Encoded As...

0-3 ’view’ (0x76696577) type descriptor
4-7 reserved, must be set to 0
8-19 absolute XYZ value for illuminant in cd/m2 XYZNumber
20-31 absolute XYZ value for surround in cd/m2 XYZNumber
32-35 illuminant type as described in measurementType

6.21 XYZType

The XYZType contains an array of three encoded values for the XYZ tristimulus values. The number of
sets of values is determined from the size of the tag. The byte stream is given below. Tristimulus values
must be non-negative, the signed encoding allows for implementation optimizations by minimizing the
number of fixed formats.

byte(s) content Encoded As...

0-3 ’XYZ ’ (0x58595A20) type descriptor
4-7 reserved, must be set to 0
8-n an array of XYZ numbers XYZNumber

7 Basic Numeric Types

7.1 dateTimeNumber

This dateTimeNumber is a 12 byte value representation of the time and date. The actual values are
encoded as 16 bit unsigned integers.

byte(s) content

0-1 number of the year (actual year, i.e. 1994)
2-3 number of the month (1-12)
4-5 number of the day of the month (1-31)
6-7 number of hours (0-23)
8-9 number of minutes (0-59)
10-11 number of seconds (0-59)

7.2 s15Fixed16Number

This type represents a fixed signed 4 byte/32 bit quantity which has 16 fractional bits.

The encoding is such that : s15.16

Tristimulus Value Encoded Value

-32768. 0 0x80000000
0 0x00000000
1.0 0x00010000
32767 + (65535/65536) 0x7fffffff

7.3 u16Fixed16Number

This type represents a fixed unsigned 4 byte/32 bit quantity which has 16 fractional bits.

++++++

The encoding is such that : u16.16

Tristimulus Value Encoded Value

0 0x00000000
1.0 0x00010000
65535 + (65535/65536) 0xffffffff

7.4 uInt16Number

This type represents a generic unsigned 2 byte/16 bit quantity.

7.5 uInt32Number

This type represents a generic unsigned 4 byte/32 bit quantity.

7.6 uInt64Number

This type represents a generic unsigned 8 byte/64 bit quantity.

7.7 uInt8Number

This type represents a generic unsigned 1 byte/8 bit quantity.

7.8 XYZNumber

This type represents a set of three fixed signed 4 byte/32 bit quantity. The byte stream is given below.
Tristimulus values must be non-negative. The signed encoding allows for implementation optimizations
by minimizing thenumber of fixed formats.

byte(s) content Encoded As...

0-3 encoded X value s15Fixed16Number
4-7 encoded Y value s15Fixed16Number
8-11 encoded Z value s15Fixed16Number

8 Tag Sequencing Requirements
The header is the first element in the file structure encompassing the first 128 bytes. This is immediately
followed by the tag table. Tag data elements make up the rest of the file structures. There may be any
number of tags and no particular order is required for the data of the tags . Each tag may have any size
(up to the limit imposed by the 32 bit offsets). Exactly which tags are required or optional with which

profiles have been described in section 3 on Device Profiles.

All tag data is required to start on a 4-byte boundary (relative to the start of the profile header) so that a
tag starting with a long will be properly aligned without the tag handler needing to know the contents of
the tag. This means that the low 2 bits of the beginning offset must be 0. The element size should be for
actual data and must not include padding at the endof the tag data.

Device Profile and Color Transforms Tag Sequence :

header (as described below)
tag table
(all other tag data elements)

The tag table acts as a table of contents for the tags and tag element data in the profiles. The first four
bytes contain a count of the number of tags in the table itself. The tags within the table are not required
to be in any particular order.

Individual Tag Structures Within Tag Table

byte(s) content

0-3 tag signature
4-7 offset to beginning of tag data
8-11 element size for the number of bytes in the tag data element

8.1 Header Description

This header provides a set of parameters at the beginning of the profile format. For color transformation
profiles, the device profile dependent fields are set to zero if irrelevant. Having a fixed length header
allows for performance enhancements in the profile searching and sorting operations.

byte(s) content Encoded As...

0-3 Profile size
4-7 Identifies the preferred CMM to be used.
8-11 Profile version number see below
12-15 Profile/Device class
16-19 Color space of data (possibly a derived space) see below
 [i.e. "the canonical input space"]
20-23 Profile connection space see below
 [i.e. "the canonical output space"]
24-35 Date and time this profile was first created dateTimeNumber
36-39 ’acsp’ (0x61637370) profile file signature
40-43 Primary platform target for the profile
44-47 Flags to indicate various options for the CMM see below
 such as distributed processing and caching options
48-51 Device manufacturer of the device for which this see below
 profile is created
52-55 Device model of the device for which this profile see below
 is created
56-63 Device attributes unique to the particular device see below
 setup such as media type
64-67 Specifies the rendering intent of this profile for see below
 the CMM. Perceptual, relative colorimetric,
 saturation and absolute colorimetric are the four
 intents required to be supported with default
 values of 0, 1, 2 and 3 respectively.
68-79 The XYZ values of the illuminant of the profile XYZNumber
 connection space. This must correspond to D50. It
 is explained in more detail in section 2.
80-127 48 bytes reserved for future expansion

CMMType :

Identifies the preferred CMM to be used. The signatures must be registered in order to avoid conflicts.

Profile Version:

Profile version number where the first 8 bits are the major version number and the next 8 bits are for the
minor version number. The major and minor version numbers are set by the International Color
Consortium and will match up with the profile format revisions. The current version number is 0x02
with a minor version number of 0x00.

The encoding is such that:

Bytes content

0 Major Revision in BCD
1 Minor Revision & Bug Fix Revision in each nibble in BCD

2 reserved, must be set to 0
3 reserved, must be set to 0

Major version change can only happen if there is an incompatible change. An example of a major
version change may be the addition of new required tags. Minor version change can happen with
compatible changes. An example of a minor version number change may be the addition of new optional
tags.

Color Space Signatures:

The encoding is such that :

Color Space Signature hex encoding
XYZData ’XYZ ’ 0x58595A20
labData ’Lab ’ 0x4C616220
luvData ’Luv ’ 0x4C757620
YCbCrData ’YCbr ’ 0x59436272
YxyData ’Yxy ’ 0x59787920
rgbData ’RGB ’ 0x52474220
grayData ’GRAY’ 0x47524159
hsvData ’HSV ’ 0x48535620
hlsData ’HLS ’ 0x484C5320
cmykData ’CMYK’ 0x434D594B
cmyData ’CMY ’ 0x434D5920

Profile Connection Space Signatures:

The encoding is such that:

Profile Connection Color Space Signature hex encoding
XYZData ’XYZ ’ 0x58595A20
labData ’Lab ’ 0x4C616220

When the profile is a DeviceLink profile, the Profile Connection Space Signature is taken from the
Color Space Signatures table. (See section 4.1)

Primary Platform Flag:

Flags to indicate the primary platform/operating system framework for which the profile was created.

The encoding is such that:

Primary Platform Signature hex encoding
Apple Computer, Inc. ’APPL ’ 0x4150504C
Microsoft Corporation ’MSFT ’ 0x4D534654
Silicon Graphics, Inc. ’SGI ’ 0x53474920
Sun Microsystems, Inc. ’SUNW ’ 0x53554E57
Taligent, Inc. ’TGNT ’ 0x54474E54

ProfileFlags:

Flags to indicate various hints for the CMM such as distributed processing and caching options. The first
16 bits (low word in big-endian notation) are reserved for the Profile Consortium.

The encoding is such that:

Flags bit position
Embedded Profile (0 if not embedded, 1 if embedded in file) 0
Profile cannot be used independently from the embedded 1
color data (set to 1 if true, 0 if false)

Device manufacturer and model:

The signatures for various manufacturers and models are listed in a separate document (ICC
Signatures). New signatures must be registered with the ICC.

Rendering Intent:

Rendering intent of this profile for the CMM. Perceptual, relative colorimetric, saturation and absolute
colorimetric are the four intents required to be supported. The first 16 bits worth of numbers are reserved
for the Profile Consortium.

The encoding is such that :

Rendering Intent value
Perceptual 0
Relative Colorimetric 1
Saturation 2
Absolute Colorimetric 3

Note that this flag might not have any meaning until the profile is used in some context, e.g. in a
DeviceLink or embedded source profile.

Attributes:

Attributes unique to the particular device setup such as media type. The first 16 bits are reserved for the
Profile Consortium.

The encoding is such that (with "on" having value 1 and "off" having value 0)

Attribute bit position

Reflective (off) or Transparency (on) 0
Glossy (off) or Matte (on) 1s

9 Embedding Device Profiles within Documents

This sections details the requirements and options for embedding device profiles within PICT, EPS and
TIFF documents. All profiles except abstract profile can be embedded. The complete profile must be

embedded with all tags intact and unchanged.

Embedding devicelink profiles renders the color data device dependent and significantly reduces
portability. This may be useful in some situations, but may also cause problems with accurate color
reproduction.

9.1 PICT

Apple has defined a new QuickDraw picture comment type for embedded ICC profiles. The picture
comment value of 224 is followed by a 4-byte selector that describes the type of data in the comment.
Using a selector allows the flexibility to embed more ColorSync related information in the future. The
following selectors are currently defined:

Selector Description

 0 Begining of an ICC profile. Profile data to follow.
 1 Continuation of ICC profile data. Profile data to follow.
 2 End of ICC profile data. No profile data follows.

Because the dataSize parameter of the PicComment procedure is a signed 16-bit value, the maximum
amount of profile data that can be embedded in a single picture comment is 32763 bytes (32767 - 4
bytes for the selector). You can embed a larger profile by using multiple picture comments of selector
type 1. The profile data must be embedded in consecutive order, and the last piece of profile data must
be followed by a picture comment of selector type 2.

All embedded ICC profiles, including those that fit within a single picture comment, must be followed
by the end-of-profile picture comment (selector 2), as shown in the following examples.

Example 1: Embedding a 20K profile.

PicComment kind = 224, dataSize = 20K + 4, selector = 0, profile data = 20K
PicComment kind = 224, dataSize = 4, selector = 2

Example 2: Embedding a 50K profile.

PicComment kind = 224, dataSize = 32K, selector = 0, profile data = 32K - 4

PicComment kind = 224, dataSize = 18K + 8, selector = 1, profile data = 18K + 4
PicComment kind = 224, dataSize = 4, selector = 2

In ColorSync 1.0, picture comment types CMBeginProfile (220) and CMEndProfile (221) are used to
begin and end a picture comment. The CMBeginProfile comment is not supported for ICC profiles;
however, the CMEndProfile comment can be used to end the current profile and begin using the System
Profile for both ColorSync 1.0 and 2.0.

The CMEnableMatching (222) and CMDisableMatching (223) picture comments are used to begin and

end color matching in both ColorSync 1.0 and 2.0.

See Inside Macintosh: Imaging With QuickDraw for more information about picture comments.

9.2 EPS

There are two places within EPS files that embedding International ColorConsortium (ICC) profiles are
appropriate. 1) Associated with a screenpreview. 2) Associated with the page description. Embedding
ICC profileswithin a screen preview is necessary so that applications using this screen preview to
display a representation of the EPS page description can do so with accurate colors. Embedding ICC
profiles within a page description is necessary so that sophisticated applications, such as OPI server
software, can perform color conversions along with image replacement. For general information
concerning PostScript’s Document Structuring Conventions (DSC), the EPS file format, or specific
PostScript operators, see the PostScript Language Reference Manual, second edition.

1) There are a variety of different methods of storing a screen preview within an EPS file depending on
the intended environment. For cross platform applications with embedded ICC profiles, TIFF screen
previews are recommended. The TIFF format has been extended to support the embedding of ICC
profiles. ICC profiles can also be embedded in a platform specific manner. For example on the
Macintosh, Apple has defined a method for embedding ICC profiles in PICT files.

Note that a given page description may use multiple distinct color spaces. In such cases, color
conversions must be performed to a single color space to associate with the screen preview.

2) ICC profiles can also be embedded in the page description portion of an EPS file using the
%%BeginICCProfile / %%EndICCProfile comments. This convention is defined as follows.

%%BeginICCProfile: <profileid> <numberof> [<type> [<bytesorlines>]]
 <profileid> ::= <text> (Profile ID)
 <numberof> ::= <int> (Lines or physical bytes)
 <type> ::= Hex | ASCII (Type of data)
 <bytesorlines> ::= Bytes | Lines (Read in bytes or lines)
%%EndICCProfile (no keywords)

These comments are designed to provide information about embedded ICC profiles. If the type

argument is missing, ASCII data is assumed. ASCII refers to an ASCII base-85 representation of the
data. If the bytesorlines argument is missing, <numberof> shall be considered to indicate bytes of
data. If <numberof> = -1, the number of bytes of data are unknown. In this case, to skip over the profile
one must read data until the encountering the %%EndICCProfile comment.

<profileID> provides the profile’s ID in order to synchronize it with PostScript’s setcolorspace and
findcolorrendering operators and associated operands (see below). Note that <numberof> indicates the
bytes of physical data, which vary from the bytes of virtual data in some cases. With hex, each byte of
virtual data is represented by two ASCII characters (two bytes of physical data). Although the PostScript
interpreter ignores white space and percent signs in hex and ASCII data, these count toward the byte
count.

Each line of profile data shall begin with a single percent sign followed by a space (%). This makes the

entire profile section a PostScript language comment so the file can be sent directly to a printer without
modification. The space avoids confusion with the open extension mechanism associated with DSC
comments.

ICC profiles can be embedded within EPS files to allow sophisticated applications, such as OPI server
software, to extract the profiles, and to perform color processing based on these profiles. In such
situations it is desirable to locate the page description’s color space and rendering intent, since this color
space and rendering intent may need to be modified based on any color processing. The
%%BeginSetColorSpace/%%EndSetColorSpace and %%BeginRenderingIntent /
%%EndRenderingIntent comments are used to delimit the color space and rendering intent respectively.

%%BeginSetColorSpace <profileid>
 <profileid> ::= <text> (ICC Profile ID)
%%EndSetColorSpace (no keywords)

<profileid> provides the ICC profile’s ID corresponding to this color space. The ICC profile with this
profile must have occured in the PostScript job using the %%BeginICCProfile / %%EndICCProfile

comment convention prior to this particular %%BeginSetColorSpace comment.

An example usage is shown here for CIE 1931 (XYZ)-space with D65 white point that refers to the ICC
profile with <profileid> = XYZProfile.

%%BeingSetColorSpace XYZProfile
[/CIEBasedABC <<
 /WhitePoint [0.9505 1 1.0890]
 /RangeABC [0 0.9505 0 1 0 1.0890]
 /RangeLMN [0 0.9505 0 1 0 1.0890]
>>] setcolorspace
%%EndSetColorSpace

Note that the setcolorspace command is included within the comments. The PostScript enclosed in these
comments shall not perform any other operations other than setting the color space and shall have no
side effects.

%%BeginRenderingIntent <profileid>
 <profileid> ::= <text> (ICC Profile ID)
%%EndRenderingIntent

<profileid> provides the ICC profile’s ID corresponding to this rendering intent. The ICC profile with
this profile must have occured in the PostScript job using the %%BeginICCProfile /

%%EndICCProfile comment convention prior to invocation of this particular %%BeginRenderingIntent

comment.

An example usage is shown here for the the Perceptual rendering intent that refers to the ICC profile
with <profileid> = RGBProfile.

%%BeginRenderingIntent RGBProfile
/Perceptual findcolorrendering pop
/ColorRendering findresource setcolorrendering
%%EndRenderingIntent

Note that the setcolorrendering command is included within the comments. The PostScript enclosed in
these comments shall not perform any other operations other than setting the rendering intent and shall
have no side effects.

9.3 TIFF

The discussion below assumes some familiarity with TIFF internal structure. It is beyond the scope of
this document to detail the TIFF format, and readers are referred to the "TIFF(tm) Revision 6.0"
specification, which is available from the Aldus Corporation.

The International Color Consortium (ICC) has been assigned a private TIFF tag for purposes of
embedding ICC device profiles within TIFF image files. This is not a required TIFF tag, and Baseline
TIFF readers are not currently required to read it. It is, however, strongly recommended that this tag be
honored.

A ICCdevice profile is embedded, in its entirety, as a single TIFF field or Image File Directory (IFD)
entry in the IFD containing the corresponding image data. An IFD should contain no more than one
embedded profile. A TIFF file may contain more than one image, and so, more than one IFD. Each IFD
may have its own embedded profile. Note, however, that Baseline TIFF readers are not required to read
any IFDs beyond the first one.

The structure of the ICC Profile IFD Entry is as follows.

Bytes 0-1 The TIFF Tag that identifies the field = 34675(8773.H)
Bytes 2-3 The field Type = 7 = UNDEFINED (treated as 8-bit bytes).
Bytes 4-7 The Count of values = the size of the embedded ICC profile i n
Bytes 8-11 The Value Offset = the file offset, in bytes, to the beginni n
 the ICC profile.

Like all IFD entry values, the embedded profile must begin on a word boundary, so the Value Offset
will always be an even number. A TIFF reader should have no knowledge of the internal structure of an
embedded ICC profile and should extract the profile intact.

Appendix A : C Header File Example
This appendix provides a cross-platform conditionally compilable header file for the InterColor Profile
Format.

/* Header file guard bands */
#ifndef INTERCOLOR_H
#define INTERCOLOR_H

#pragma ident "@(#)intercolor.h 1.1 10 Jun 1994"
/*
 * Copyright 1994 The InterColor Profile Consortium & SunSoft Inc
 *
 * Permission to use, copy, modify, and distribute this software and its

 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation, and that the names of the ColorSync Profile
 * Consortium and SunSoft not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.
 *
 * SUNSOFT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
 * SUNSOFT BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
 * ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 * ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 * SOFTWARE.
 */

/*
 * This version of the header file corresponds to the profile
 * specification version 3.0.
 *
 * All header file entries are pre-fixed with "ic" to help
 * avoid name space collisions. Signatures are pre-fixed with
 * icSig.
 */

/*--*/
/*
 * Defines used in the specification
 */
#define icMagicNumber 0x61637370 /* ’acsp’ */
#define icVersionNumber 0x02000000 /* 2.0, BCD */

/* Screening Encodings */
#define icPrtrDefaultScreensFalse 0x00000000 /* Bit position 0 */
#define icPrtrDefaultScreensTrue 0x00000001 /* Bit position 0 */
#define icLinesPerInch 0x00000002 /* Bit position 1 */
#define icLinesPerCm 0x00000000 /* Bit position 1 */

/*
 * Device attributes, currently defined values correspond
 * to the low 4 bytes of the 8 byte attribute quantity, see
 * the header for their location.
 */
#define icReflective 0x00000000 /* Bit position 0 */
#define icTransparency 0x00000001 /* Bit position 0 */
#define icGlossy 0x00000000 /* Bit
position 1 */
#define icMatte 0x00000002 /* Bit position 1 */

/*
 * Profile header flags, the low 16 bits are reserved for consortium
 * use.
 */
#define icEmbeddedProfileFalse 0x00000000 /* Bit position 0 */
#define icEmbeddedProfileTrue 0x00000001 /* Bit position 0 */
#define icUseAnywhere 0x00000000 /* Bit position 1 */
#define icUseWithEmdeddedDataOnly 0x00000002 /* Bit position 1 */

/* Ascii or Binary data */
#define icAsciiData 0x00000000 /* Used in dataType */

#define icBinaryData 0x00000001

/*
 * Define used to indicate that this is a variable length array
 */
#define icAny 1

/*--*/
/*
 * Signatures, these are basically 4 byte identifiers
 * used to differentiate between tags and other items
 * in the profile format.
 *
 * Set the typedef icSignature as appropriate for your
 * Operating system.
 */
#if defined(unix) || defined(__unix)
typedef long icSignature;
#endif Unix

/* public tags and sizes */
typedef enum {
 icSigAToB0Tag = 0x41324230, /* ’A2B0’ */
 icSigAToB1Tag = 0x41324231, /* ’A2B1’ */
 icSigAToB2Tag = 0x41324232, /* ’A2B2’ */
 icSigBlueColorantTag = 0x6258595A, /* ’bXYZ’ */
 icSigBlueTRCTag = 0x62545243, /* ’bTRC’ */
 icSigBToA0Tag = 0x42324130, /* ’B2A0’ */
 icSigBToA1Tag = 0x42324131, /* ’B2A1’ */
 icSigBToA2Tag = 0x42324132, /* ’B2A2’ */
 icSigCalibrationDateTimeTag = 0x63616C74, /* ’calt’ */
 icSigCharTargetTag = 0x74617267, /* ’targ’ */
 icSigCopyrightTag = 0x63707274, /* ’cprt’ */
 icSigDeviceMfgDescTag = 0x646D6E64, /* ’dmnd’ */
 icSigDeviceModelDescTag = 0x646D6464, /* ’dmdd’ */
 icSigGamutTag = 0x676d7420, /* ’gmt ’ */
 icSigGrayTRCTag = 0x6b545243, /* ’kTRC’ */
 icSigGreenColorantTag = 0x6758595A, /* ’gXYZ’ */
 icSigGreenTRCTag = 0x67545243, /* ’gTRC’ */
 icSigLuminanceTag = 0x6C756d69, /* ’lumi’ */
 icSigMeasurementTag = 0x6D656173, /* ’meas’ */
 icSigMediaBlackPointTag = 0x626B7074, /* ’bkpt’ */
 icSigMediaWhitePointTag = 0x77747074, /* ’wtpt’ */
 icSigNamedColorTag = 0x6E636f6C, /* ’ncol’ */
 icSigPreview0Tag = 0x70726530, /* ’pre0’ */
 icSigPreview1Tag = 0x70726531, /* ’pre1’ */
 icSigPreview2Tag = 0x70726532, /* ’pre2’ */
 icSigProfileDescriptionTag = 0x64657363, /* ’desc’ */
 icSigProfileSequenceDescTag = 0x70736571, /* ’pseq’ */
 icSigPs2CRD0Tag = 0x70736430, /* ’psd0’ */
 icSigPs2CRD1Tag = 0x70736431, /* ’psd1’ */
 icSigPs2CRD2Tag = 0x70736432, /* ’psd2’ */
 icSigPs2CRD3Tag = 0x70736433, /* ’psd3’ */
 icSigPs2CSATag = 0x70733273, /* ’ps2s’ */
 icSigPs2RenderingIntentTag = 0x70733269, /* ’ps2i’ */
 icSigRedColorantTag = 0x7258595A, /* ’rXYZ’ */
 icSigRedTRCTag = 0x72545243, /* ’rTRC’ */
 icSigScreeningDescTag = 0x73637264, /* ’scrd’ */
 icSigScreeningTag = 0x7363726E, /* ’scrn’ */
 icSigTechnologyTag = 0x74656368, /* ’tech’ */

 icSigUcrBgTag = 0x62666420, /* ’bfd ’ */
 icSigViewingCondDescTag = 0x76756564, /* ’vued’ */
 icSigViewingConditionsTag = 0x76696577, /* ’view’ */
 icMaxEnumTag = 0xFFFFFFFF /* enum = 4
bytes max */
} icTagSignature;

/* technology signature descriptions */
typedef enum {
 icSigFilmScanner = 0x6673636E, /* ’fscn’ */
 icSigReflectiveScanner = 0x7273636E, /* ’rscn’ */
 icSigInkJetPrinter = 0x696A6574, /* ’ijet’ */
 icSigThermalWaxPrinter = 0x74776178, /* ’twax’ */
 icSigElectrophotographicPrinter = 0x6570686F, /* ’epho’ */
 icSigElectrostaticPrinter = 0x65737461, /* ’esta’ */
 icSigDyeSublimationPrinter = 0x64737562, /* ’dsub’ */
 icSigPhotographicPaperPrinter = 0x7270686F, /* ’rpho’ */
 icSigFilmWriter = 0x6670726E, /* ’fprn’ */
 icSigVideoMonitor = 0x7669646D, /* ’vidm’ */
 icSigVideoCamera = 0x76696463, /* ’vidc’ */
 icSigProjectionTelevision = 0x706A7476, /* ’pjtv’ */
 icSigCRTDisplay = 0x43525420, /* ’CRT ’ */
 icSigPMDisplay = 0x504D4420, /* ’PMD ’ */
 icSigAMDisplay = 0x414D4420, /* ’AMD ’ */
 icSigPhotoCD = 0x4B504344, /* ’KPCD’ */
 icSigPhotoImageSetter = 0x696D6773, /* ’imgs’ */
 icSigGravure = 0x67726176, /* ’grav’ */
 icSigOffsetLithography = 0x6F666673, /* ’offs’ */
 icSigSilkscreen = 0x73696C6B, /* ’silk’ */
 icSigFlexography = 0x666C6578, /* ’flex’ */
 icMaxEnumTechnology = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icTechnologySignature;

/* type signatures */
typedef enum {
 icSigCurveType = 0x63757276, /* ’curv’ */
 icSigDataType = 0x64617461, /* ’data’ */
 icSigDateTimeType = 0x6474696D, /* ’dtim’ */
 icSigLut16Type = 0x6d667432, /* ’mft2’ */
 icSigLut8Type = 0x6d667431, /* ’mft1’ */
 icSigNamedColorType = 0x6E636f6C, /* ’ncol’ */
 icSigProfileDescriptionType = 0x64657363, /* ’desc’ */
 icSigS15Fixed16Type = 0x73663332, /* ’sf32’ */
 icSigScreeningType = 0x7363726E, /* ’scrn’ */
 icSigSignatureType = 0x73696720, /* ’sig ’ */
 icSigTextType = 0x74657874, /* ’text’ */
 icSigU16Fixed16Type = 0x75663332, /* ’uf32’ */
 icSigUInt16Type = 0x75693136, /* ’ui16’ */
 icSigUInt32Type = 0x75693332, /* ’ui32’ */
 icSigUInt64Type = 0x75693634, /* ’ui64’ */
 icSigUInt8Type = 0x75693038, /* ’ui08’ */
 icSigViewingConditionsType = 0x76696577, /* ’view’ */
 icSigXYZType = 0x58595A20, /* ’XYZ ’ */
 icMaxEnumType = 0xFFFFFFFF /* enum = 4
bytes max */
} icTagTypeSignature;

/* Color Space Signatures */
typedef enum {
 icSigXYZData = 0x58595A20, /* ’XYZ ’ */

 icSigLabData = 0x4C616220, /* ’Lab ’ */
 icSigLuvData = 0x4C757620, /* ’Luv ’ */
 icSigYCbCrData = 0x59436272, /* ’YCbr’ */
 icSigYxyData = 0x59787920, /* ’Yxy ’ */
 icSigRgbData = 0x52474220, /* ’RGB ’ */
 icSigGrayData = 0x47524159, /* ’GRAY’ */
 icSigHsvData = 0x48535620, /* ’HSV ’ */
 icSigHlsData = 0x484C5320, /* ’HLS ’ */
 icSigCmykData = 0x434D594B, /* ’CMYK’ */
 icSigCmyData = 0x434D5920, /* ’CMY ’ */
 icMaxEnumData = 0xFFFFFFFF /* enum = 4
bytes max */
} icColorSpaceSignature;

/* profileClass enumerations */
typedef enum {
 icSigInputClass = 0x73636E72, /* ’scnr’ */
 icSigDisplayClass = 0x6D6E7472, /* ’mntr’ */
 icSigOutputClass = 0x70727472, /* ’prtr’ */
 icSigLinkClass = 0x6C696E6B, /* ’link’ */
 icSigAbstractClass = 0x61627374, /* ’abst’ */
 icSigColorSpaceClass = 0x73706163, /* ’spac’ */
 icMaxEnumClass = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icProfileClassSignature;

/* Platform Signatures */
typedef enum {
 icSigMacintosh = 0x4141504C, /* ’AAPL’ */
 icSigMicrosoft = 0x4D534654, /* ’MSFT’ */
 icSigSolaris = 0x53554E57, /* ’SUNW’ */
 icSigSGI = 0x53474920, /* ’SGI ’ */
 icSigTaligent = 0x54474E54, /* ’TGNT’ */
 icMaxEnumPlatform = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icPlatformSignature;

/*--*/
/*
 * Other enums
 */

/* Measurement Flare, used in the measurmentType tag */
typedef enum {
 icFlare0 = 0x00000000, /* 0% flare */
 icFlare100 = 0x00000001, /* 100% flare */
 icMaxFlare = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icMeasurementFlare;

/* Measurement Geometry, used in the measurmentType tag */
typedef enum {
 icGeometryUnknown = 0x00000000, /* Unknown geometry */
 icGeometry045or450 = 0x00000001, /* 0/45 or 45/0 */
 icGeometry0dord0 = 0x00000002, /* 0/d or d/0 */
 icMaxGeometry = 0xFFFFFFFF /* enum = 4
bytes max */
} icMeasurementGeometry;

/* Rendering Intents, used in the profile header */
typedef enum {

 icPerceptual = 0,
 icRelativeColorimetric = 1,
 icSaturation = 2,
 icAbsoluteColorimetric = 3,
 icMaxEnumIntent = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icRenderingIntent;

/* Different Spot Shapes currently defined, used for screeningType */
typedef enum {
 icSpotShapeUnknown = 0,
 icSpotShapePrinterDefault = 1,
 icSpotShapeRound = 2,
 icSpotShapeDiamond = 3,
 icSpotShapeEllipse = 4,
 icSpotShapeLine = 5,
 icSpotShapeSquare = 6,
 icSpotShapeCross = 7,
 icMaxEnumSpot = 0xFFFFFFFF /* enum = 4
bytes max */
} icSpotShape;

/* Standard Observer, used in the measurmentType tag */
typedef enum {
 icStdObsUnknown = 0x00000000, /* Unknown observer */
 icStdObs1931TwoDegrees = 0x00000001, /* 1931 two degrees */
 icStdObs1964TenDegrees = 0x00000002, /* 1961 ten degrees */
 icMaxStdObs = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icStandardObserver;

/* Pre-defined illuminants, used in measurement and viewing conditions type */
typedef enum {
 icIlluminantUnknown = 0x00000000,
 icIlluminantD50 = 0x00000001,
 icIlluminantD65 = 0x00000002,
 icIlluminantD93 = 0x00000003,
 icIlluminantF2 = 0x00000004,
 icIlluminantD55 = 0x00000005,
 icIlluminantA = 0x00000006,
 icIlluminantEquiPowerE = 0x00000007, /* Equi-Power (E) */
 icIlluminantF8 = 0x00000008,
 icMaxEnumIluminant = 0xFFFFFFFF /* enum = 4 bytes max
*/
} icIlluminant;

/*--*/
/*
 * Number definitions
 */

/* Fixed numbers */
typedef long icS15Fixed16Number;
typedef unsigned long icU16Fixed16Number;

/* Plain old int numbers */
typedef unsigned char icUInt8Number;
typedef unsigned short icUInt16Number;
typedef unsigned long icUInt32Number;
typedef unsigned long icUInt64Number[2];

/* Signed numbers */
typedef char icInt8Number;
typedef short icInt16Number;
typedef long icInt32Number;
typedef long icInt64Number[2];

/* The base date time number */
typedef struct {
 icUInt16Number year;
 icUInt16Number month;
 icUInt16Number day;
 icUInt16Number hours;
 icUInt16Number minutes;
 icUInt16Number seconds;
} icDateTimeNumber;

/* XYZ Number */
typedef struct {
 icS15Fixed16Number X;
 icS15Fixed16Number Y;
 icS15Fixed16Number Z;
} icXYZNumber;

/*--*/
/*
 * Tag Type definitions
 */

/*
 * Many of the structures contain variable length arrays. This
 * is represented by the use of the convention.
 *
 * type data[icAny];
 */
/* curveType */
typedef struct {
 icSignature sig; /* Signature, "curv" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number count; /* Number of entries */
 icUInt16Number data[icAny]; /* The actual table data, real
 * number is determined by count
 */
} icCurveType;

/* dataType */
typedef struct {
 icSignature sig; /* Signature, "data" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number dataFlag; /* 0 = ascii, 1 = binary */
 icInt8Number data[icAny]; /* Data, size determined from
tag */
} icDataType;

/* dateTimeType */
typedef struct {
 icSignature sig; /* Signature, "dtim" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icDateTimeNumber date; /* The date */
} icDateTimeType;

/* lut16Type */

typedef struct {
 icSignature sig; /* Signature, "mft2" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt8Number inputChan; /* Number of input
channels */
 icUInt8Number outputChan; /* Number of output
channels */
 icUInt8Number clutPoints; /* Number of clutTable
grid points */
 icInt8Number pad; /* Padding for byte
alignment */
 icS15Fixed16Number e00; /* e00 in the 3 * 3 */
 icS15Fixed16Number e01; /* e01 in the 3 * 3 */
 icS15Fixed16Number e02; /* e02 in the 3 * 3 */
 icS15Fixed16Number e10; /* e10 in the 3 * 3 */
 icS15Fixed16Number e11; /* e11 in the 3 * 3 */
 icS15Fixed16Number e12; /* e12 in the 3 * 3 */
 icS15Fixed16Number e20; /* e20 in the 3 * 3 */
 icS15Fixed16Number e21; /* e21 in the 3 * 3 */
 icS15Fixed16Number e22; /* e22 in the 3 * 3 */
 icUInt16Number inputEnt; /* Number of input table
entries */
 icUInt16Number outputEnt; /* Number of output table
entries */
 icUInt16Number data[icAny]; /* Data follows see spec for size */
/*
 * Data that follows is of this form
 *
 * icUInt16Number inputTable[icAny]; * The input table
 * icUInt16Number clutTable[icAny]; * The clut table
 * icUInt16Number outputTable[icAny]; * The output table
 */
} icLut16Type;

/* lut8Type, input & output tables are always 256 bytes in length */
typedef struct {
 icSignature sig; /* Signature, "mft1" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt8Number inputChan; /* Number of input
channels */
 icUInt8Number outputChan; /* Number of output
channels */
 icUInt8Number clutPoints; /* Number of clutTable
grid points */
 icInt8Number pad;
 icS15Fixed16Number e00; /* e00 in the 3 * 3 */
 icS15Fixed16Number e01; /* e01 in the 3 * 3 */
 icS15Fixed16Number e02; /* e02 in the 3 * 3 */
 icS15Fixed16Number e10; /* e10 in the 3 * 3 */
 icS15Fixed16Number e11; /* e11 in the 3 * 3 */
 icS15Fixed16Number e12; /* e12 in the 3 * 3 */
 icS15Fixed16Number e20; /* e20 in the 3 * 3 */
 icS15Fixed16Number e21; /* e21 in the 3 * 3 */
 icS15Fixed16Number e22; /* e22 in the 3 * 3 */
 icUInt8Number data[icAny]; /* Data follows see spec for
size */
/*
 * Data that follows is of this form
 *
 * icUInt8Number inputTable[256]; * The input table
 * icUInt8Number clutTable[icAny]; * The clut table

 * icUInt8Number outputTable[256]; * The output table
 */
} icLut8Type;

/* Measurement Type */
typedef struct {
 icSignature sig; /* Signature, "meas" */
 icInt8Number reserved[4];/* Reserved, set to 0 */
 icStandardObserver stdObserver;/* Standard observer */
 icXYZNumber backing; /* XYZ for backing material */
 icMeasurementGeometry geometry; /* Measurement geometry */
 icMeasurementFlare flare; /* Measurement flare */
 icIlluminant illuminant; /* Illuminant */
} icMeasurmentType;

/* Named color type */
typedef struct {
 icSignature sig; /* Signature, "ncol" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number vendorFlag; /* Bottom 16 bits for IC use
*/
 icUInt32Number count; /* Count of named colors */
 icInt8Number data[icAny]; /* Named color data follows */
/*
 * Data that follows is of this form
 *
 * icInt8Number prefix[icAny]; * Prefix for the color name, max = 32
 * icInt8Number suffix[icAny]; * Suffix for the color name, max = 32
 * icInt8Number root1[icAny]; * Root name for first color, max = 32
 * icInt8Number coords1[icAny]; * Color co-ordinates of first color
 * icInt8Number root2[icAny]; * Root name for first color, max = 32
 * icInt8Number coords2[icAny]; * Color co-ordinates of first color
 * :
 * :
 * Repeat for root name and color co-ordinates up to (count-1)
 */
} icNamedColorType;

/* Profile sequence structure */
typedef struct {
 icSignature deviceMfg; /* Device Manufacturer */
 icSignature deviceModel; /* Decvice Model */
 icUInt64Number attributes; /* Device attributes */
 icSignature technology; /* Technology signature */
 icInt8Number data[icAny]; /* Descriptions text follows*/
/*
 * Data that follows is of this form
 *
 * icInt8Number mfgDesc[icAny]; * Manufacturer text
 * icInt8Number modelDesc[icAny]; * Model text
 */
} icDescStruct;

/* Profile sequence description type */
typedef struct {
 icSignature sig; /* Signature, "pseq" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number count; /* Number of descriptions */
 icDescStruct data[icAny]; /* Array of description struct
*/
} icProfileSequenceDescTag;

/* profileDescriptionType */
typedef struct {
 icSignature sig; /* Signature, "desc" */
 icInt8Number eserved[4]; /* Reserved, set to 0
*/
 icUInt32Number count; /* Description length */
 icInt8Number data[icAny]; /* Descriptions follow */
/*
 * Data that follows is of this form
 *
 * icInt8Number desc[icAny] * NULL terminated ascii string
 * icUInt32Number ucLangCode; * UniCode language
code
 * icUInt32Number ucCount; * UniCode description
length
 * icInt8Number ucDesc[icAny; * The UniCode description
 * icUInt16Number scCode; * ScriptCode code
 * icUInt8Number scCount; * ScriptCode count
 * icInt8Number scDesc[64]; * ScriptCode Description
 */
} icProfileDescriptionType;

/* s15Fixed16Type */
typedef struct {
 icSignature sig; /* Signature, "sf32" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icS15Fixed16Number data[icAny]; /* Array of values */
} icS15Fixed16ArrayType;

/* screeningType */
typedef struct {
 icS15Fixed16Number frequency; /* Frequency */
 icS15Fixed16Number angle; /* Screen angle */
 icSpotShape spotShape; /* Spot Shape encodings below
*/
} icScreeningData;

typedef struct {
 icSignature sig; /* Signature, "scrn" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number screeningFlag; /* Screening flag */
 icUInt32Number channels; /* Number of channels */
 icScreeningData data[icAny]; /* Array of screening data */
} icScreeningType;

/* sigType */
typedef struct {
 icSignature sig; /* Signature, "sig" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icSignature signature;
} icSignatureType;

/* textType */
typedef struct {
 icSignature sig; /* Signature, "text" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icInt8Number data[icAny]; /* Variable array of
characters */
} icTextType;

/* u16Fixed16Type */

typedef struct {
 icSignature sig; /* Signature, "uf32" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icU16Fixed16Number data[icAny]; /* Variable array of values */
} icU16Fixed16ArrayType;

/* Structure describing either a UCR or BG curve */
typedef struct {
 icUInt32Number count; /* Curve length */
 icUInt16Number curve[icAny]; /* The array of curve values */
} icUcrBgCurve;

/* Under color removal, black generation type */
typedef struct {
 icSignature sig; /* Signature, "bfd " */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUcrBgCurve ucr; /* Ucr curve */
 icUcrBgCurve bg; /* Bg curve */
} icUcrBgType;

/* uInt16Type */
typedef struct {
 icSignature sig; /* Signature, "ui16" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt16Number data[icAny]; /* Variable array of values */
} icUInt16ArrayType;

/* uInt32Type */
typedef struct {
 icSignature sig; /* Signature, "ui32" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt32Number data[icAny]; /* Variable array of values */
} icUInt32ArrayType;

/* uInt64Type */
typedef struct {
 icSignature sig; /* Signature, "ui64" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt64Number data[icAny]; /* Variable array of values */
} icUInt64ArrayType;

/* uInt8Type */
typedef struct {
 icSignature sig; /* Signature, "ui08" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icUInt8Number data[icAny]; /* Variable array of values */
} icUInt8ArrayType;

/* viewingConditionsType */
typedef struct {
 icSignature sig; /* Signature, "view" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icXYZNumber illuminant; /* In candelas per metre sq’d
*/
 icXYZNumber surround; /* In candelas per metre sq’d
*/
 icIlluminant stdIluminant; /* See icIlluminant defines */
} icViewingConditionType;

/* XYZ Type */
typedef struct {

 icSignature sig; /* Signature, "XYZ" */
 icInt8Number reserved[4]; /* Reserved, set to 0 */
 icXYZNumber data[icAny]; /* Variable array of XYZ numbers */
} icXYZType;

/*--*/

/*
 * Tag table and profile header
 */

/* A tag */
typedef struct {
 icTagSignature sig; /* The tag signature */
 icUInt32Number offset; /* To start of data from header */
 icUInt32Number size; /* Size in bytes */
} icTag;

/* A Tag Table */
typedef struct {
 icUInt32Number count; /* Number of tags in the profile */
 icTag tags[icAny]; /* Variable array of tags */
} icTagTable;

/* The Profile header */
typedef struct {
 icUInt32Number size; /* Profile size in bytes */
 icSignature cmmId; /* CMM associated with the profile */
 icUInt32Number version; /* Format version number */
 icSignature deviceClass; /* Type of device */
 icSignature colorSpace; /* Color space of data */
 icSignature pcs; /* Profile Connection Space */
 icDateTimeNumber date; /* Date profile was created */
 icSignature magic; /* The magic number ’acsp’ */
 icSignature platform; /* Primary Platform */
 icUInt32Number flags; /* Various bit settings */
 icSignature manufacturer; /* Device manufacturer */
 icUInt32Number model; /* Device model number */
 icUInt64Number attributes; /* Device attributes */
 icUInt32Number renderingIntent; /* Rendering intent */
 icXYZNumber illuminant; /* Profile illuminant */
 icInt8Number reserved[48]; /* Reserved for future use */
} icHeader;

/* A profile */
typedef struct {
 icHeader header; /* The header */
 icTagTable tagTable; /* The tag table */
 icInt8Number tags[icAny]; /* Start of tag data */
} icProfile;

/*--*/

#endif INTERCOLOR_H

Appendix B : 7 Bit ASCII

The ASCII character set defines a 1-to-1 mapping of characters to 8-bit values. The characters with hex
codes 0x00-0x7F, the 7-bit subset of ISO Latin-1 characters which are invariant regardless of locale.

In a InterColor invariant profile name, it is illegal to use characters not defined in this table and to
maintain maximum portability, it is recommended that special characters not be used :

 hexadecimal:
 | 00 nul | 01 soh | 02 stx | 03 etx | 04 eot | 05 enq | 06 ack | 07 bel | |
 | 08 bs | 09 ht | 0a nl | 0b vt | 0c np | 0d cr | 0e so | 0f si |
 | 10 dle | 11 dc1 | 12 dc2 | 13 dc3 | 14 dc4 | 15 nak | 16 syn | 17 etb |
 | 18 can | 19 em | 1a sub | 1b esc | 1c fs | 1d gs | 1e rs | 1f us |
 | 20 sp | 21 ! | 22 " | 23 # | 24 $ | 25 % | 26 & | 27 ’ |
 | 28 (| 29) | 2a * | 2b + | 2c , | 2d - | 2e . | 2f / |
 | 30 0 | 31 1 | 32 2 | 33 3 | 34 4 | 35 5 | 36 6 | 37 7 |
 | 38 8 | 39 9 | 3a : | 3b ; | 3c < | 3d = | 3e > | 3f ? |
 | 40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47 G |
 | 48 H | 49 I | 4a J | 4b K | 4c L | 4d M | 4e N | 4f O |
 | 50 P | 51 Q | 52 R | 53 S | 54 T | 55 U | 56 V | 57 W |
 | 58 X | 59 Y | 5a Z | 5b [| 5c \ | 5d] | 5e ^ | 5f _ |
 | 60 ‘ | 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67 g |
 | 68 h | 69 i | 6a j | 6b k | 6c l | 6d m | 6e n | 6f o |
 | 70 p | 71 q | 72 r | 73 s | 74 t | 75 u | 76 v | 77 w |
 | 78 x | 79 y | 7a z | 7b { | 7c | | 7d } | 7e ~ | 7f del |

 decimal:
 | 0 nul | 1 soh | 2 stx | 3 etx | 4 eot | 5 enq | 6 ack | 7 bel | |
 | 8 bs | 9 ht | 10 nl | 11 vt | 12 np | 13 cr | 14 so | 15 si |
 | 16 dle | 17 dc1 | 18 dc2 | 19 dc3 | 20 dc4 | 21 nak | 22 syn | 23 etb |
 | 24 can | 25 em | 26 sub | 27 esc | 28 fs | 29 gs | 30 rs | 31 us |
 | 32 sp | 33 ! | 34 " | 35 # | 36 $ | 37 % | 38 & | 39 ’ |
 | 40 (| 41) | 42 * | 43 + | 44 , | 45 - | 46 . | 47 / |
 | 48 0 | 49 1 | 50 2 | 51 3 | 52 4 | 53 5 | 54 6 | 55 7 |
 | 56 8 | 57 9 | 58 : | 59 ; | 60 < | 61 = | 62 > | 63 ? |
 | 64 @ | 65 A | 66 B | 67 C | 68 D | 69 E | 70 F | 71 G |
 | 72 H | 73 I | 74 J | 75 K | 76 L | 77 M | 78 N | 79 O |
 | 80 P | 81 Q | 82 R | 83 S | 84 T | 85 U | 86 V | 87 W |
 | 88 X | 89 Y | 90 Z | 91 [| 92 \ | 93] | 94 ^ | 95 _ |
 | 96 ‘ | 97 a | 98 b | 99 c |100 d |101 e |102 f |103 g |
 |104 h |105 i |106 j |107 k |108 l |109 m |110 n |111 o |
 |112 p |113 q |114 r |115 s |116 t |117 u |118 v |119 w |
 |120 x |121 y |122 z |123 { |124 | |125 } |126 ~ |127 del |

Appendix C : PostScript Level 2 Tags
Theses tags are provided in order to control exactly the PostScript Level 2 operations that should occur
for a given profile. These tags are only valid for PostScript Level 2 (and conceivably future versions of
PostScript) devices, and are not generally supported in PostScript Level 1 devices. In addition, some of
the tags may correspond to PostScript operations that are not supported in all PostScript Level 2 devices.
Using such tags requires first checking for the available operators. All operators described in the
PostScript Language Reference Manual, second edition, are available on all PostScript Level 2 devices.
Documentation for extensions to PostScript Level 2 are available through Adobe’s Developer Support
Organization. In addition, guidelines for PostScript compatibility with this profile format are available.
For details of such operator support, compatibility guidelines, the PostScript Level 2 device independent

color model, or other PostScript-related issues contact Adobe’s Developer Support Organization.

In general, there is a straightforward relationship between the profile’s header fields and tags, and these
PostScript tags. It is anticipated that the various CMSs that support this profile format will also provide
support for these optional PostScript tags. To verify such support contact the CMS vendors directly. In
cases where such support is provided, and the desired model of operations is the same for PostScript
processing as it is for CMS processing, these tags can be omitted, since all necessary information is in
the profile itself. In the case where such CMS support is in question or processing different than that
provided by an arbitrary CMS is desired, these tags can be populated to provide exact control over the
PostScript processing. For example, if private tags are used in the profile to achieve a non-public type of
processing on certain CMSs, such processing can be achieved on a PostScript device by populating the
appropriate PostScript tags.

Some of the PostScript tags have a tag type of textType or uInt8Type. This choice is provided in order to
match the properties of the communicationschannel to the data in these tags. Encoding the data in
uInt8Type form is recommended to save memory and/or reduce transmission times. Applications and
drivers may convert it to ASCII Coded PostScript, Binary Coded PostScript, or Token Binary Coded
PostScript or leave it in binary format to match the requirements of the communications channel.
Applications and drivers are responsible for this potential conversion from binary data to channel
compatible data. The data should be encoded in textType in those cases where the amount of data is
relatively small or where the conversion from binary to channel compatible data is not available.

The PostScript contained in these tags is not self evaluating - it simply provides operands. These
operands must be followed by operators like setcolorspace , setcolorrendering , and
findcolorrendering .

Appendix D : Profile Connection Space
Explanation

Introduction

This Appendix is intended to clarify certain issues of interpretation in the International Color
Consortium Profile Format.

The goal of color management is to provide the capability of maintaining control over color rendering
among various devices and media that may be interconnected through a computer system or network. To
achieve this goal, the color characteristics of each device are determined and encapsulated in a device
profile, which is a digital representation of the relation between device coordinates and a
device-independent specification of color.

By device coordinates we mean the numerical quantities through which a computer system
communicates with a color peripheral-such as the digital code values used to drive a monitor or printer,
or the digital signals received from a scanner. These quantities are usually labeled RGB (or CMYK), but
the labels identify the channels of the device rather than specific visual colors; the quantities are often
encoded as unsigned 8-bit integers for each channel in the typical digital interface.

The device-independent specification is best given in a color space based on human visual experience.
Thus, a device profile provides a means of translating (or transforming) color image data from device
coordinates into a visual color space or vice versa.

Furthermore, if the various profiles available to a color-management system are referenced to the same
visual color space, the system can translate data from one device’s coordinates to another’s-while
maintaining color consistency-by (conceptually) passing through the intermediary of the visual color
space; the latter, then, constitutes a standard interface for color communication, allowing profiles to be
connected together in a meaningful sequence. A color space used in this way may be termed a Profile
Connection Space (PCS). For example, the transformation of a color image from a scanner into monitor
coordinates can be described as a transformation into the PCS (via the scanner’s device profile) followed
by a transformation out of the PCS (via the monitor’s device profile). In practice, these successive
transformations may be implemented in a variety of ways, and the image may never actually be
represented in the PCS on disk or in computer memory. Thus, the PCS is to be regarded as a convenient
reference for the definition of profiles-as an intermediate, or virtual, stage of the image processing-, in
contrast to an interchange or exchange color space, which is an encoding for the storage and
transmission of color images. The issues regarding the choice or design of a PCS are somewhat different
from those related to an interchange space; this Appendix is concerned only with PCS issues.

A PCS consists of a coordinate system for color space and an interpretation of the data represented in
that coordinate system. In fact, multiple coordinate systems can easily be supported in the same or
different color-management systems, as long as they share a common interpretation, since it is usually a
well-defined and relatively simple mathematical task to transform from one coordinate system to
another. However, if the interpretation of the represented colors is different, there may be no satisfactory
way of translating the data from one to another.

The purpose of this paper is to present an unambiguous interpretation for the PCS implicit in the
International Color Consortium Profile Format. It is especially important in the heterogeneous
environments currently found on desktop platforms and networks to establish this interpretation in an
open, non-proprietary specification, so that different color-management systems can communicate with
each other and exchange profiles within and across platforms and operating systems.

Colorimetry and Its Interpretation

The issue of interpretation has received little attention in the recent past, because it has been widely
believed that the choice of a suitable coordinate system-preferably one founded on CIE colorimetry, a
system of measurement and quantification of visual color stimuli created and promoted by the
Commission Internationale de l’Eclairage-would suffice to guarantee device independence. The notion
was that colorimetric matching of the renderings on various media was the key to satisfactory color
reproduction, and that interpretation was not needed. However, although colorimetry can be an essential
element of a successful approach to color management, it is usually necessary to modify thecolorimetric
specification for renderings on different media. Different media require different physical color stimuli,
in certain cases, because they will be viewed in different environments-e.g., different surroundconditions
or illuminants; the observers, therefore, will experience differentadaptive effects. In order to preserve the
same color appearance in these different environments, the colorimetry must be corrected to compensate
for the adaptation of the human visual system and for physical differences in the viewing environments,
such as flare. Although color appearance is still an active research topic, the most common forms of
adaptation are understood reasonably well, so that the required corrections in the colorimetry for

different viewing conditions can be modeled with sufficient accuracy.

There are other reasons why the colorimetry may be altered for specific media. For instance, hard-copy
media-even those intended for the same viewing conditions-differ considerably in their dynamic range
and color gamut. A well-crafted rendering of an image on a specific medium will take advantage of the
capabilities of that medium without creating objectionable artifacts imposed by its limitations. For
instance, the tone reproduction of the image should provide sufficient contrast in the midtones without
producing blocked-up shadows or washed-out highlights. The detailed shape of the tone curve will
depend on the minimum and maximum densities (Dmin and Dmax) attainable in the medium. Clearly,
there is considerable art involved in shaping the tone-reproduction and color-reproduction characteristics
of different media, and much of this art is based on subjective, aesthetic judgments. As a result, the
substrate (paper, transparency material, etc.) and the colorants used in a medium will be exploited to
impart a particular "personality" to the reproduction that is characteristic of the medium.

Furthermore, the desired behavior of a color-management system depends strongly on artistic intent. If
the output medium is identical to the input medium-say, 35-mm slides-, the desired behavior is typically
to create a duplicate of the original. But if the two media are different, it is not so obvious what the
default behavior should be. In some cases, the intent may be to retain all or part of the personality of the
original; in other cases, it may be more important to remove the personality of the original and replace
itwith a fresh rendering that has the full personality of the output medium. Sometimes the simulation of
a third medium may be important-as when an image is displayed on a monitor to preview a rendering on
a dye-diffusion printer, retaining (as well as possible) the personality of an original image scanned from
a photographic print! It is essential to the success of color-management systems that a broad range of
options be kept open. The interpretation of the PCS merely defines the particular default behavior that
will be facilitated bythe system without explicit intervention by the application or user. Alternative
behaviors are not excluded by this choice; they simply will not be the default and will require more
work.

With this context in mind, we present the following interpretation:

The PCS represents desired color appearances.

Here, the term desired is used to indicate that the interpretation is oriented towards colors to be
produced on an output medium. It also is used to imply that these colors are not restricted by the
limitations of any particular output medium. It is helpful here to conceptualize a "reference reproduction
medium", with a large gamut and dynamic range, as the target medium for the desired colors.
Consequently, it is the responsibility of the output device profiles to clip or compress these colors into
the gamut of the actual output media. And, of course, "desired" also implies the expression of artistic
intent.

The term color appearance is used to imply that adaptive effects are taken into account. Associated with
the reference reproduction medium is a "reference viewing environment". More precisely, therefore, the
PCS represents the "desired color appearances" in terms of the CIE colorimetry of the colors to be
rendered on the reference medium and viewed in the reference environment. Output profiles for media
that are viewed in different environments are responsible for modifying the colorimetry to account for
the differences in the observer’s state of adaptation (and any substantial differences in flare light present
in these environments), so that color appearance is preserved. Similarly, input profiles are responsible
for modifying the colorimetry of the input media to account for adaptation and flare; they also have the

responsibility to account for the artistic intent implicit in the word "desired".

We define the reference reproduction medium as an idealized print, to be viewed in reflection, on a
"paper" that is a perfect, non-selective diffuser (i.e., Dmin = 0), with colorants having a large dynamic
range and color gamut.We define the reference viewing environment to be the standard viewing booth
(ANSI PH-2.30); in particular, it is characterized by a "normal" surround-i.e., where the illumination of
the image is similar to the illumination of the rest of the environment-, and the adapting illuminant is
specified to have the chromaticity of D50 (a particular daylight illuminant).

Color Measurements

The PCS, so interpreted, represents colors for a hypothetical reference medium; device profiles must
relate these colors to those that can be measuredon real media. For consistency of results, these
measurements must be made in accordance with the principles of CIE colorimetry.

For one particular class of media-namely, those intended for the graphic arts-, the colorimetry should
conform to graphic-arts standards for color measurement.1 Here, the illuminant is specified to be D50,
so that no corrections need to be applied for chromatic adaptation. The colorimetry standard is based on
a theoretical D50 illuminant, as defined by the CIE in the form of a tabulated spectral distribution.
However, the fluorescent D50 simulators found in typical professional viewing booths have rather
different spectral distributions, and the color stimuli produced can be noticeably different.2 Often, better
results can be obtained by basing the colorimetry on the actual, rather than the theoretical, illumination
source; unfortunately, there is no standardized, practically realizable source.

For other, non-graphic-arts, media, the illuminant may be different from D50. In general, for best
results, the actual illumination spectrum should be used in the color measurements. And if the
chromaticity of the illuminant is different from that of D50, corrections for chromatic adaptation will be
needed and will be incorporated into the device-profile transforms. This aspect of the PCS interpretation
provides flexibility to the color-management system. For example, it will be possible to transform data
from a medium intended for tungsten illumination to a medium intended for cool-white-fluorescent: the
input profile handles the adaptation from tungstento D50, and the output profile handles the adaptation
from D50 to cool-white.

Since substantial flare (perhaps 2-3%) may be present in an actual viewing environment,3 the
colorimetry is defined in an ideal, flareless measurement environment; in this way, difficult telescopic
color measurements in the viewing environment can be avoided, and simple contact instruments and/or
controlled laboratory conditions can be used instead. (Corrections should be applied to the data for any
appreciable flare in the actual measurement environment and instruments.)

Colorimetry Corrections and Adjustments in Output Profiles

The implications of this interpretation should be emphasized: the creator of a profile is obliged to correct
and adjust the PCS data for various effects. Since the PCS is interpreted with an output orientation, we
will first examinethe nature of these corrections and adjustments for output profiles. Then, in the next
section, we will discuss the consequences for input profiles.

Let us look at a number of possible output paths:

Output to reflection print media : Included here are computer-driven printers, off-press proofing
systems, offset presses, gravure printing, photographic prints, etc. These are generally intended for
"normal" viewing environments; but corrections may be needed-e.g., for chromatic adaptation, if the
illuminant’s chromaticity is other than that of D50.

In the simplest scenario, the user desires to reproduce colors colorimetrically (aside from adaptive
corrections) so as to attain an appearance match. A distinction can be made between "absolute" and
"relative" colorimetry in this context. Absolute colorimetry coincides with the CIE system: color stimuli
are referenced to a perfectly reflecting diffuser. All reflection print media have a reflectance less than
1.0 and cannot reproduce densities less than their particular Dmin. In a cross-rendering task, the choice
of absolute colorimetry leads to a close appearance match over most of the tonal range, but, if the Dmin
of the input medium is different from that of the output medium, the areas of the image that are left
blank will be different. This circumstance has led to the use of relative colorimetry, in which the color
stimuli are referenced to the paper (or other substrate). Thischoice leads to a cross-rendering style in
which the output image may be lighter or darker overall than the input image, but the blank areas will
coincide. Both capabilities must be supported, since there are users in both camps. However, the default
chosen for International Color Consortium profiles is relative colorimetry.

This can be made more precise: the default "colorimetric" transform will effectively apply a scaling
operation in the CIE 1931 XYZ color space:

Xout = (Xpaper / XD50) X (EQ 1)
Yout = (Ypaper / YD50) Y (EQ 1)
Zout = (Zpaper / ZD50) Z (EQ 3)

where XYZ are the coordinates of a color in the PCS, (XYZ) out are the coordinates of the
corresponding color to be produced on the output medium, (XYZ)D50 are the coordinates of the lightest
neutral represented in the PCS (namely, one with the chromaticity of D50 and a luminance of 1.0), and
(XYZ) paper are the coordinates of the output paper (or other substrate) adapted to the PCS illuminant
(D50). Thus, the lightest neutral in the PCS will be rendered as blank paper-regardless of the reflectance
or color cast ofthe paper-; other neutrals and colors will be rescaled proportionately and will be rendered
darker than the paper. Output on different reflection print media will then agree with the PCS and with
each other in relative colorimetry and, therefore, in relative appearance.

In other cases, the preference may be for absolute colorimetry. This means that, within the limitations of
the output medium, the CIE colorimetry of the output image should agree with values represented in the
PCS. I.e., Xout = X, Yout = Y, and Zout = Z. One way of achieving this result is to apply a separate
transformation to the PCS values, outside of the device profile (e.g., in application or system software):

X’ = (XD50 / Xpaper) X (EQ 4)
Y’ = (YD50 / Ypaper) Y (EQ 5)
Z’ = (ZD50 / Zpaper) Z (EQ 6)

The relative values, X’ Y’ Z’, can then be processed through the default colorimetric transform (i.e.,
they are effectively substituted for XYZ in Equations 1-3) to achieve the desired result.

This capability depends on the availability to the color-management software of the colorimetry of the
paper. The "medium white point" tag in the profile can be used for this purpose and should represent the
adapted, absolute colorimetry of the lightest neutral that the device and/or medium can render (usually
the blank substrate).

In either case, it may happen that the dynamic range and/or color gamut of the output medium is not
sufficient to encompass all the colors encoded in the PCS. Some form of clipping will then occur-in the
highlights, in the shadows, or in the most saturated colors. While an appearance match may be achieved
over much of color space, there will be a loss of detail in some regions. If this is objectionable, the
operator should have an option for selecting a more explicit form of gamut compression to be applied to
the colors as part of the output profile. International Color Consortium profiles support two styles of
controlled gamut compression-"photographic" and "saturation-preserving"-in addition to the
"colorimetric" option, which clips abruptly at the gamut boundary. (An important case requiring explicit
gamut compression is that of input from a transparency, where the dynamic range, even of the corrected
colors, may exceed that of any reflection print medium.) Note that an explicit compression maps colors
from the dynamic range and gamut of the reference medium to the range and gamut of the actual
medium, so that only (XYZ)D50-i.e., the lightest PCS neutral-will be rendered as blank paper, just as in
the relative-colorimetric case. This time, however, the entire tone scale may be readjusted, to keep the
shadows from blocking up and to maintain proper midtones, and some in-gamut colors may be adjusted
to make room for out-of-gamut colors.

Output to transparency media: This category might include overhead transparencies and large-format
color-reversal media, as well as slide-production systems. Transparency materials are normally intended
to be viewed by projection (using a tungsten lamp) in a dim or darkened room; in some cases, however,
they are placed on a back-lit viewer for display, and in others they are used as a graphic-arts input
medium, in which case they are examined on a light box or light table with the aid of a loupe.
Accordingly, there are several possible viewing conditions for transparencies, requiring somewhat
different corrections.

Typical color-reversal films have a much larger dynamic range than reflection media and higher
midscale contrast. Their tone-reproduction characteristics have evolved empirically, but it may be
plausible to explain them as partially compensating for dark-surround adaptation and the flare conditions
typical in a projection room. The state of brightness adaptation in a projection room is also different
from that in a reflection environment. To the extent that these explanations are valid, the colorimetry
should be corrected for these effects. Furthermore, in some of these environments the visual system is
partially adapted to a tungsten source, and chromatic corrections should be applied for the difference
between tungsten and D50.

A "colorimetric" rendering, in this case, will actually produce an appearance match to the colors in the
PCS, rather than a colorimetric match-i.e., the colors measured on the resulting transparency will differ
from those encoded in the PCS, but will appear the same when the transparency is viewed in its intended
environment as the PCS colors would if rendered on the reference medium and viewed in reflection.

Note that the lightest neutral, (XYZ)D50,will be rendered at or near Dmin of the transparency in the
default (relative) colorimetric transform. An absolute-colorimetric rendering can be generated in
software, as described above for reflection-print media.

Explicit gamut compression can be provided as an option; it normally would notbe needed for images
input from photographic media, but it may be useful for input from computer graphics, since some of the
highly saturated colors available on a computer color monitor fall outside the gamut of transparency
media.

Negative media: Here the target colors are those of a reflection print to be made from the negative. No
adaptive corrections are required, unless the printis intended to be viewed under an illuminant other than
D50. Explicit gamut compression is a useful option, and both relative and absolute colorimetric matches
can be provided as in the case of direct-print media.

Monitor display: The viewing conditions of a CRT monitor may require some corrections to the
colorimetry, due to the effects of surround and flare. Also, if the monitor’s white point is other than D50,
chromatic adaptation must be accounted for. When corrections for these effects are applied, the colors in
the display should match the appearance of those in the PCS and should provide accurate and useful
feedback to the operator.

In most cases, the rendering should be "colorimetric" (possibly including adaptive corrections), in order
to achieve this result. (As for reflection print media, this would be "relative" by default, but "absolute"
colorimetry is also supported.) In other cases (video production, perhaps), it may be moreimportant to
the user to create a pleasing image on the monitor (without having out-of-gamut colors block up, for
instance) than to preserve an appearance match to the PCS; for that purpose, explicit gamut compression
would be a useful option.

In many scenarios, the monitor display is not the end product, but rather a tool for an operator to use in
controlling the processing of images for other renderings. For this purpose, it will be possible to simulate
on the monitor the colors that would be obtained on various other output media. The PCS colors are first
transformed into the output-device coordinates, using any preferred style of gamut compression. Then
they are transformed back to the PCS by using the (colorimetric) inverse output transform. (These two
steps can be replaced by an equivalent "preview" transform.) Finally they are transformed
(colorimetrically) into monitor coordinates for previewing. The result of compression to the output
gamut should then be visible in the displayed image.

Colorimetry Corrections and Adjustments in Input Profiles

The purpose of an input profile is to transform an image into the PCS-i.e., tospecify the colors that are
desired in the output. Since there are many possible intentions that a user might have for these colors, we
cannot impose many restrictions on the nature of the transforms involved. Bearing in mind the
capabilities of the output profiles, as just outlined, we can suggest the possibilities available to various
classes of input profiles.

Scanned reflection prints: Here the intended viewing environment may be identical to the reference,
but, if not, adaptive corrections should be applied to the colorimetry. In the simplest case, the profile
may consist of atransformation from scanner signals to the colorimetry of the medium. In this case, the
personality of the input medium has been preserved. If the output rendering is also "colorimetric", the
result will be an appearance match to the original. Indeed, if the output medium is the same as the input
medium, the result should be a close facsimile or duplicate of the original.

By default, the rendering is based on relative colorimetry, as discussed above. Therefore, it should be
remembered, when creating an input profile, that the (XYZ)D50 point of the PCS will be mapped to the
Dmin of the output medium. This implies that the Dmin of the input medium must be mapped to the
(XYZ)D50 point of the PCS, in order to facilitate the duplication of an original and a
relative-colorimetry match when cross-rendering.

In order to enable the alternative of absolute colorimetry, the "white point" field in the header of the
input profile should be used to specify the colorimetry of the paper. This allows the absolute colorimetry
of the originalto be computed from relative colorimetry represented in the PCS, by analogy toEquations
1-3 above. These absolute color stimuli can then be converted to relative colorimetry for output by using
the "white point" field of the output profile in Equations 4-6.

There are other possibilities, however. The input profile could be designed to remove some or all of the
personality of the input medium, so that the PCS encoding makes use of more of the gamut and dynamic
range of the reference medium. In these cases, it will probably be best to choose some form of explicit
gamut compression in the output profile. The result may differ in appearance considerably from the
original and will constitute a fresh rendering tuned to the capabilities and limitations of the output
medium.

In any case, a calibrated color monitor, if available, can be used to display an accurate preview of the
result.

Scanned transparencies: Since transparencies are intended for viewing in a variety of environments,
different kinds of adaptive corrections may be applied to the colorimetry of the input medium to obtain
colors in the PCS. For instance, the device profile might transform scanner signals into the colorimetry
of a reference print that would have the same appearance in the reference environment as the
transparency produces in a projection environment. (Note that there may be no actual reflection print
medium that has sufficient dynamic range to reproduce all of these color appearances). In this scenario,
the personality of the color-reversal film or other transparency material is retained, even though the
colorimetry has been modified for the PCS; still, this may be loosely termed a "colorimetric" transform,
since the only corrections are for flare and adaptation.

As in the case of input prints, there are other possibilities: some or all of the personality of the input
medium can be removed, according to artistic intent, yielding different results, which also depend on the
style of gamut compression selected for output.Normally, the Dmin of the input medium should be
mapped to (XYZ)D50 in the PCS. The absolute, adapted XYZ of the Dmin color is recorded in the
"medium white point" tag.

Scanned negatives: Photographic negatives, of course, are not intended for direct viewing. Therefore,
the colorimetry that is relevant here might be thatof a hypothetical reflection print made from the
negative and intended for viewing in the reference environment. No adaptive corrections should be
applied. The personality of the result is that of the negative-positive systemas a whole. Again, other
possibilities exist, depending on artistic intent.

Computer graphics: Such imagery is usually synthesized in the RGB space of a display monitor that
provides visual feedback to the operator. Thus, adaptive corrections may need to be applied to the
colorimetry of the monitor to definethe colorimetry of a reference print having the same appearance. The
personality here is that of the synthetic image on the monitor screen.

Scene capture: This pathway refers to video cameras, electronic still cameras, and other technologies
(such as Photo CD(tm)) that provide a capability of approximately determining the colorimetry of
objects in a real-world scene. Inmost cases, the tone scale must be adjusted to provide enough contrast
for viewing the reference medium in the reference environment; the colorfulness of the image should
also be enhanced somewhat for that environment. The personality of the result, of course, depends on

the nature of these adjustments.

Colorimetric input: In some cases, input colors are specified that are intended to be processed
colorimetrically, without any tone shaping or chromatic enhancement. This might be the case, for
instance, when a scene-capture device is used to record the colorimetry of real-world objects for
scientific reasons, rather than for creating a pleasing reproduction. It may also be the case when
particular spot colors are specified in colorimetricterms. In these cases, the specified colorimetric values
are left intact in the transformation to the PCS; no adaptive corrections or adjustments are applied. The
PCS values should be represented in relative colorimetry, and the"white point" tag specifies the
reference point for the scaling. In some cases this reference point will have a luminance of 1.0, and there
will be no difference between relative and absolute colorimetry. In other cases the reference point will
have the colorimetry of (say) the paper stock used in a spot-color sample book or of a particular light
neutral in a scene. In most ofthese cases, the preferred output rendering will also be "colorimetric". By
default, as before, this will entail relative colorimetry; absolute colorimetry can be achieved, outside of
the default transforms, by taking account of the "white point" tags of the input and output profiles and
converting appropriately.

An image of this kind can be said to have no personality.

As can be inferred from some of these examples, the user may have a choice of input profiles having
different intents, as well as a choice among output transforms having different intents. The end result
depends on both of these choices, which, for the most predictable color reproduction, should be made in
coordination. To aid in this coordination, there are profile tags that specify the rendering intent and that
distinguish between input transforms that are colorimetric (aside from possible corrections for flare and
adaptation) and those that have applied adjustments to the colorimetry.

Techniques for Colorimetry Corrections

As we have seen, if the viewing conditions of the medium are different from the reference (e.g.,
projected slides or video viewed in dim or dark surround), corrections to the colorimetry of the
reproduction should be applied.[4] These should be designed to correct for differences in the flare light
present in these environments, as well as the effects of non-normal surround, brightness adaptation to
the absolute radiant flux of the illumination, and any other effects that are found to be significant. And if
the medium was intended to be viewed under an illuminant of different chromaticity than that of D50,
the profile should incorporate corrections for chromatic adaptation; these can simply be based on a
linear scaling in XYZ (which happens automatically in the CIELAB system); alternatively, it can be
based on the linear Von Kries transformation[5] (or, if preferred, a more sophisticated, nonlinear model
of color appearance, such as that of Hunt[6] or Nayatani[7]).

If the creators of device profiles universally apply these corrections to their colorimetric data, the PCS
will have a universal, unambiguous interpretation, and images rendered "colorimetrically" will evoke (as
nearly as possible) the same appearance, regardless of the medium and viewing environment of the
reproduction. In this way, the same image can be rendered on photographic transparency material,
various reflective print media, CRT’s, etc., and will, by and large, appear similar to the viewer. This goal
cannot be achieved simply by matching the colorimetry of the reproductions. Various forms of explicit
gamut compression and input effects can be made available for situations where other goals are
important; the recommended PCS interpretation does not limit these possibilities in any way: it merely
facilitates the default behavior of the color-management system.

[1]IT8.7/3, "Graphic technology--Input data for characterization of 4-color process printing", draft
standard of Subcommittee 4 (Color) of ANSI Committee IT8 (Digital Data Exchange Standards), 14
December 1992, Paragraph 4.2.

[2]D. Walker, "The Effects of Illuminant Spectra on Desktop Color Reproduction", in
Device-Independent Color Imaging, R. Motta and H. Berberian, ed., Proc. SPIE, 1909, 1993, pp.
236-246.

[3]R.W.G. Hunt, The Reproduction of Colour, Fourth Edition, Fountain Press, 1987, pp. 52-53.

[4]Hunt, op. cit., pp. 56-61.

[5]R.W.G. Hunt, Measuring Color, Ellis Horwood, pp. 70-71.

[6]Ibid., pp. 146-173.

[7]Y. Nayatani, K. Takahama, and H. Sobagaki, "Prediction of color appearance under various adapting
conditions", Color Res. Appl., 11, 62 (1986).

Appendix E: References
ANSI

ANSI PH2.30-1989, American National Standards Institute, 11 West 42nd Street, New York, New
York, 10036.

CGATS and IT8

CGATS and IT8 documents are available from NPES The Association for Suppliers of Printing and
Publishing Technologies, 1899 Preston White Drive, Reston, VA 22091-4367.

Knuth MetaFonts

MetaFont:The Program (Computers & Typesetting ; D), Donald Knuth, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1986

Macintosh Localization References

Guide to Macintosh Software Localization, Apple Computer, Inc., Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1992 and Inside Macintosh, Text, Apple Computer,
Inc.,Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1993.

PostScript Level 2

PostScriptTM. Language Reference Manual, Second Edition, Adobe Systems Inc., Second Edition,

Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1990.

Unicode

The Unicode Standard, Worldwide Character Encoding, The Unicode Consortium, Version 1.0,
Volumes 1 & 2, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1990.

Index
Copyright Notice
Licenses and Trademark
Contents
1 Introduction
2 Summary
2.1 Intended Audience
2.2 Organizational Description of This Specification
2.3 International Color Consortium
2.4 Device Profiles
2.5 Color Spaces
2.6 Profile Connection Spaces
2.7 Profile Element Structure
2.8 Embedded Profiles
2.9 Profile Classifications
2.10 PostScript Level 2 Tags
2.11 Redundant Data Arbitration
2.13 Fixed Point Math
2.14 Big-Endian Notation
2.15 Rendering Intent
3 Device Profile Descriptions
3.1 Input Profile
3.1.1 Monochrome Input Profiles
3.1.2 RGB Input Profiles
3.1.3 CMYK Input Profiles
3.2 Display Profile
3.2.1 Monochrome Display Profiles
3.2.2 RGB Display Profiles
3.3 Output Profile
3.3.1 Monochrome Output Profiles
3.3.2 RGB and CMYK Output Profiles
4 Additional Profile Formats
4.1 DeviceLink Profile
4.2 ColorSpaceConversion Profile
4.3 Abstract Profile
5 Tag Descriptions
5.1 AToB0Tag
5.2 AToB1Tag
5.3 AToB2Tag
5.4 blueColorantTag
5.5 blueTRCTag
5.6 BToA0Tag
5.7 BToA1Tag
5.8 BToA2Tag
5.9 calibrationDateTimeTag
5.10 charTargetTag
5.11 copyrightTag
5.12 deviceMfgDescTag
5.13 deviceModelDescTag

5.14 gamutTag
5.15 grayTRCTag
5.16 greenColorantTag
5.17 greenTRCTag
5.18 luminanceTag
5.19 measurementTag
5.20 mediaBlackPointTag
5.21 mediaWhitePointTag
5.22 namedColorTag
5.23 preview0Tag
5.24 preview1Tag
5.25 preview2Tag
5.26 profileDescriptionTag
5.27 profileSequenceDescTag
5.28 ps2CRD0Tag
5.29 ps2CRD1Tag
5.30 ps2CRD2Tag
5.31 ps2CRD3Tag
5.32 ps2CSATag
5.33 ps2RenderingIntentTag
5.34 redColorantTag
5.35 redTRCTag
5.36 screeningDescTag
5.37 screeningTag
5.38 technologyTag
5.39 ucrbgTag
5.40 viewingCondDescTag
5.41 viewingConditionsTag
6 Tag Type Definitions
6.1 curveType
6.2 dataType
6.3 dateTimeType
6.4 lut16Type
6.5 lut8Type
6.6 measurementType
6.7 namedColorType
6.8 profileSequenceDescType
6.9 textDescriptionType
6.10 s15Fixed16ArrayType
6.11 screeningType
6.12 signatureType
6.13 textType
6.14 u16Fixed16ArrayType
6.15 ucrbgType
6.16 uInt16ArrayType
6.17 uInt32ArrayType
6.18 uInt64ArrayType
6.19 uInt8ArrayType
6.20 viewingConditionsType
6.21 XYZType
7 Basic Numeric Types
7.1 dateTimeNumber
7.2 s15Fixed16Number
7.3 u16Fixed16Number
7.4 uInt16Number
7.5 uInt32Number
7.6 uInt64Number
7.7 uInt8Number
7.8 XYZNumber
8 Tag Sequencing Requirements
8.1 Header Description

9 Embedding Device Profiles within Documents
9.1 PICT
9.2 EPS
9.3 TIFF
Appendix A : C Header File Example
Appendix B : 7 Bit ASCII
Appendix C : PostScript Level 2 Tags
Appendix D : Profile Connection Space Explanation
Appendix E : References

