

Color Management Systems and the ICC Version 4 Model

Ann McCarthy Chair ICC Workflow WG Lexmark International, Inc. Jack Holm Chair Digital Photography WG Hewlett Packard

Topics

- General color management system model
 —Control view
- ICC components within the general color management system
- V4 changes and benefits
- V4 ICC perceptual rendering and colorimetric intents
- Transformation options via V4 CMM
 - —Three conversion configurations
 - -Selection considerations

http://www.color.org/tokyomeeting2006.html

Color Management System - Color Control Model

A partitioning of color management processes that control color results Explicitly via purposeful control Implicitly via lack of control

These 7 color controls can be examined in any digital color system

For types of users, regions of the world, markets

-Visualization-

For each device

- —Device Calibration
- -Characterization
- -Color Aim Definition
- For the system
 - -Communication
 - -Interpretation
 - -Conversion

Communication of color content & metadata between system components | Interpretation of source colors | Conversion of the source colors to the selected target representation

The ICC addresses certain elements of color management systems – key for interoperability

- For types of users, regions of the world, markets
 - -Visualization
- For each device
 - —Device Calibration
 - -Characterization
 - -Color Aim Definition
- For the system
 - -Communication
 - -Interpretation
 - -Conversion

- ISO 3664 viewing conditions
 CIE standard observer, color spaces,
 home lighting, color appearance model
 ISO IEC JTC1 SC28 psychophysical image quality measures
- Proprietary methods, ICC recommendations
- Proprietary methods, ICC format specification
 ISO 13655 instrumentation standard
 - Proprietary methods, ICC format specification
- Various standard and proprietary communications protocols, application & system APIs, metadata
- ICC profile format specification
 ICC specification informative annexes
 ICC White paper recommendations
 CIE Div 8 gamut mapping analysis

ICC Version 4 provides practical improvements for color interpretation and conversion

- The image state concept underlies important new features in ICC Version 4 profiles
- What does image state mean in practical terms?
 - How much has the image data changed since it was scanned or captured in the camera?
 - —What is the image data ready for?
 - —How easily can the data be transformed for a different type of display?

ICC Version 4 provides practical improvements for color interpretation and conversion:

two input interpretations for scene and original images

ICC Version 4 provides practical improvements for color interpretation and conversion:

two source interpretations for output-referred images

V4 Source Interpretation

- V4 input profiles have separate transforms for perceptual rendering distinct from media-relative colorimetric color conversions
 - A single profile can provide both the 'match color' and 'pleasing color' color transforms
- V4 media-relative colorimetric transforms are the reliable "measurement" path
 - PCS white point value specified for media-relative colorimetric, perceptual and saturation rendering intent transforms
 - White point of the actual medium and the white point of the reference medium scaled to $L^*a^*b^* = 100, 0, 0$
 - PCS zero reflectance is specified as the black maximum for media-relative colorimetric rendering intent transforms
 - $L^*a^*b^* = 0, 0, 0$
- V4 perceptual intent transforms provide pleasing color connected through a virtual reference print called the 'perceptual intent reference medium'
 - Perceptual Intent Reference Medium provides a specified print output-referred [image state] "colorrendering target" for perceptual rendering intent transforms into & out of PCS
 - Reference medium linear dynamic range of 287.9 :1 [density range 2.4593]
 - Neutral reflectance WP= 89%, BP= 0.30911%
 - Reference medium black point target specified for perceptual and saturation rendering intent transforms
 - L*a*b* = 3.1373, 0, 0
 - NOTE: Perceptual transforms that use zero to represent the black point, and thus do not conform to this specification should be adjusted by scaling the black point as needed.

ICC

Experts Conference

International Color Consortium

The well-defined ICC V4 Perceptual Rendering target — key interoperability enhancement

- With ICC V4, the *perceptual intent reference medium gamut* [PRMG] is defined and standardized
 - Reference medium gamut defined in ISO 12640-3 Annex B determined from a superset of printing systems
- With V2 profiles, this was not the case, so perceptual intents in profiles from different manufacturers sometimes did not work well together
 - Most V2 input profiles performed minimal (if any) color re/rendering
 - Many V2 output profile perceptual intents tried to color re-render the entire PCS to the destination medium, resulting in poor quality
 - Other V2 output profiles were built using an assumed source gamut (e.g. sRGB) in the PCS
- With ICC V4, source profile perceptual intent transforms [A2B] should color re/render to the PRMG and destination profile perceptual intent transforms [B2A] should transform from the PRMG

ICC V4 Perceptual path: color rendering and color re-rendering

Scene colors rendered for different media & viewing conditions

scene colorimetry

color rendered to sRGB display colorimetry

color rendered to plain paper print colorimetry

color rendered to film transparency colorimetry

International Color Consortium

Why and when is color re-rendering needed?

- Viewing condition differences may require different colorimetry to maintain appearance
 - -Corresponding color (appearance) models are based on colorimetry, and are evolving
 - Need to keep the corresponding color (appearance) model used selectable
- Image colors may need to be changed to re-optimize the source image for the destination medium
 - Otherwise, only the intersection of the source and destination media color gamuts can be used

A large gamut photo print medium (wireframe) vs. the viewer observed sRGB gamut (cyan).

Example sRGB to ICC v4 PRM transform 'color re-rendering'

Full Perceptual Rendering path for pleasing color: V4 color re-rendering for output-referred sources

2nd example Perceptual Rendering path for pleasing color:
 V4 color re-rendering for output-referred sources

Color Conversion: V4 enables us to distinguish between color rendering, re-rendering and gamut mapping

- Color rendering and re-rendering algorithms change the appearance of the content, to optimize it for the next destination
 - The source content must be of high quality
 - » Color re-rendering is not image correction
- Gamut mapping algorithms try to maintain the appearance to the extent possible
 - -Within the capabilities of the destination medium
 - -Color appearance models, which map to and from perceptual correlates, are most directly applicable to gamut mapping
- Algorithms that attempt to determine corresponding colors can be used to deal with adaptation changes in either case

– e.g chromatic adaptation transforms

Conversion: V4 PCS encoding improvements

- ICC PCS CIELAB value encoding range is defined to match common CIELAB encoding usage
 - L^{*} = 100 is encoded as FFFFh (L^{*} = 100 was encoded as FF00h)
 - a*, b* = 127 is encoded as FFFFh (was encoded as FF00h)
 - Note that a legacy exception is allowed
 - lut16Type and namedColor2Type tag types (and ONLY those tag types) use a legacy 16 bit encoding of L*, a* and b* (version 2 compatibility)
 - To avoid confusion this encoding is specified in the defining clause for "Lut16Type"
- Handling of PCS encoding bounds is defined between CIE XYZ and CIE LAB
 - Consistent behavior among CMMs when converting between two PCS encodings
 - Conversions between the CIEXYZ and CIELAB encodings shall use the equations specified in CIE 15.2
 - Colors in the PCS XYZ encoding range that are outside of the PCS LAB encoding range shall be clipped on a per-component basis to the outside limits of the range of PCS LAB when transforming from XYZ into LAB
 - Colors that occur in the PCS LAB encoding range that are outside of the encoding range of PCS XYZ shall be clipped on a per-component basis to the PCS XYZ range when transforming from LAB into XYZ

PCS viewing conditions are clarified, defined

- Default illuminant D50 at 500 lux
- Reference Medium viewing condition ISO 3664 P2
- Methodology for chromatic adaptation
 - If the chromaticity of the 'device' illuminant (light source of the measurement environment) is different from that of D50
 - Corrections for chromatic adaptation must be incorporated into the mediarelative colorimetric and perceptual transforms by the profile builder
 - Transform real color values under the measuring illumination to D50 relative values
 - The profile must include a Chromatic Adaptation Tag that provides the chromatic adaptation matrix that was used
- mediaWhitePointTag contains the CIE 1931 XYZ colorimetry of the white point of the actual medium, adapted to the PCS illuminant (D50)
 - In a DISPLAY profile the mediaWhitePointTag must equal D50
- mediaBlackPointTag contains the CIE 1931 XYZ colorimetry of the black point of the actual medium, adapted to the PCS illuminant (D50) using the same chromatic adaptation matrix

Conversion: New lutAtoB and lutBtoA for round-tripping

- Round-tripping capability is critical for proofing, re-purposing, general color re-rendering
 - The new lutAtoBType and lutBtoAType structures improve on V2 lut16Type and lut8Type
 - B-to-A and A-to-B processing paths can be exact inverses
 - A, B. M curves are curveType or parametricCurveType
 - Matrix can have an offset
 - CLUT can have a variable number of grid points in each dimension
 - Channel response may require fewer or greater # of grid points
- The following sequence lutAtoB combinations are allowed
 - B
 - $M \rightarrow matrix \rightarrow B$
 - $A \rightarrow \textbf{CLUT} \rightarrow \textbf{B}$
 - $\quad \textbf{A} \rightarrow \textbf{CLUT} \rightarrow \textbf{M} \rightarrow \textbf{matrix} \rightarrow \textbf{B}$
- The following lutBtoA sequence combinations are allowed
 - B
 - $B \rightarrow matrix \rightarrow M$
 - $\quad \textbf{B} \rightarrow \textbf{CLUT} \rightarrow \textbf{A}$
 - $\quad \textbf{B} \rightarrow \textbf{matrix} \rightarrow \textbf{M} \rightarrow \textbf{CLUT} \rightarrow \textbf{A}$
- Other sequence combinations can be achieved by setting processing element values to identity transforms
- V4 "N-component LUT-based" display profiles
 - Next generation wide gamut RGB displays require CLUT-based profiles for accurate color characterization and round-tripping

Perceptual Rendering Invertability in V4

- Perceptual Rendering Intent transform design should support round-tripping
 - Design the forward transform while considering the V4 requirement to provide an inverse transform
- Inverse transforms are used for a variety of purposes:
 - Depending on whether a profile is used as a source or destination profile, either the AtoB0 or the BtoA0 transform may be the "forward" transform
 - e.g. color re-rendering sRGB SCID to CIELAB SCID, and viceversa.
 - It is desirable to be able to precisely "undo" a perceptual rendering so that content can be re-rendered to a different destination
 - Providing transforms in both directions greatly reduces loss when the exchange color encoding has gamut limitations that are not applicable to the source and destination

ICC Version 4 provides practical improvements for color interpretation and conversion: ► output conversions from PCS image states

ICC Version 4 provides practical improvements for color interpretation and conversion:
 ▶ output conversions from PCS image states

V4 Enables CMM Conversion Mode Options

- A color management color engine may seek to match colors between source and destination
- ...or may seek to deliver preference adjusted colors [color rendering and color re-rendering]
- V4 supports three conversion modes for either of these objectives
 - -Locked conversion
 - -Static CMM conversion
 - —Dynamic CMM conversion

ICC DeviceLink locked conversion

- Device-dependent proprietary color encodings become device-independent and can be interpreted in a standard way
- Proprietary 'working space' color space encodings can be interpreted in a standard way
- Each profile contains 'interpretation-from' and 'production-to' transforms for a device/other color image encoding --- referenced to a human visual color image encoding
- Such color management systems are suited to handle color conversions for a variety of digital color image encodings

ICC Static CMM

- Proprietary or standard color productions can be defined precisely for specific devices, viewing conditions, image states, media characteristics & preferences
 - Predetermined transforms built into ICC perceptual transforms use color appearance models
- Both matching and preferred production conversions can be defined
 - ♦ Note that TWO preferred productions (perceptual, saturation) can be defined in each profile
 - ✤ For certain use cases, certain workflows, other productions may be desired

• ICC Dynamic CMM

- Relative colorimetric conversion components from Version 4++ profiles can be combined with color appearance adaptations, custom gamut mapping, etc., in ICC PCS to provide runtime computed color conversions
- Note that this method relies on additional algorithmic capability and metadata provided to the CMM

Use Dynamic CMM or Static CMM with ICC Profile perceptual intent transform for pleasing results?

- Dynamic CMM transforms are determined at time of output, providing greater freedom and control later in the process
 - Depending on software, user could be able to select (as needed)
 - Corresponding color (appearance) model
 - Color rendering/re-rendering
 - Gamut mapping
 - -Caution: Selected transform combination may not be pre-tested
 - Final result may not be what source content provider expects
 - User must be able to evaluate
- ICC Profile Perceptual intent allows early control of the color transform to be provided with the source image
 - -Predictable output; pre-tested transforms
 - -Transforms can be complex and hand-tweaked
 - Multiple working spaces and/or algorithms can be used
 - -With good transforms, less user interaction is required

Conversion method selection considerations

Workflow context

- Is flexibility desired / is repeatability desired for later conversions

Conversion objectives

- Match/Pleasing Adaptation
- Static or Changing Viewing Environment

Content control owner

— Is the preferred color locked in or still in flux?

Current user desires

- Hands On/Hands Off

Source interpretation

- Color encoding ambiguity/interpretation
- Image state
- Content relationships
 - Object metadata hierarchy
 - Object layout groupings and spatial relationships

Selecting conversion method in a workflow context

International

Color Consortium

In each color conversion - choices are made regarding adapting to a new viewing situation, creating a new look, preserving a look or design that was created previously, and/or mapping to a new display/print mechanism

ICC Experts Conference

Thank you

http://www.color.org/tokyomeeting2006.html

Backup

Color Management System - Color Control Model

These color management system processes control color results Explicitly via purposeful control Implicitly via lack of control These 7 color controls are inherent in any digital color system

- For types of users, regions of the world, markets
 - -Visualization
- For each device
 - -Device Calibration
 - -Characterization
 - -Color Aim Definition
- For the system
 - -Communication
 - -Interpretation

Development time can be unrelated to a particular product or system

Considered an offline activity – computed and stored before actual use (in current systems)

Real-time executions – depend on design of interfaces, protocols, formats, algorithms – meshing with pre-computed elements

Color Management System - Color Control Model

These color management system processes control color results Explicitly via purposeful control Implicitly via lack of control These 7 color controls are inherent in any digital color system

- For types of users, regions of the world, markets
 - -Visualization
- For each device
 - Device Calibration
 - -Characterization
 - -Color Aim Definition
- For the system
 - -Communication
 - -Interpretation

Sources of error: subjects alignment with target market, experimental design

Sources of error: measurement devices, device model, gamut boundary determination, LUT size vs. gamut non-linearities, appropriate target definition

Sources of error: design omissions, mismatched component interface definitions, interpolation inaccuracies, missing metadata

