

ICC DevCon 2020 - The Future of Color Management

Max Derhak(PhD)
Principal Scientist
Onyx Graphics, Inc.

iccMAX Connections

Connecting Device Profiles with iccMAX

- Source Profile Transform is selected
 - Maps device data color space to a connection color space
- Destination Profile Transform is selected
 - Maps from a connection color space to device data color space
- Transform selection is based on rendering intent and desired connection space
- The Color Management Module (CMM)
 performs the necessary conversions
 and/or rendering intent adjustments
 between profile connection color spaces
 associated with the Profile Transforms

Significant iccMAX Rendering Intent changes

- Absolute intent transforms can be directly encoded
- Intent replacement mapping has been adjusted to allow for relative only, or absolute only profiles

iccMAX Connections

- iccMAX supports five types of inter-profile connections
- Named Color connections
 - Provides relationship between named colors and colorimetric, spectral as defined by header PCS fields as well as optional BRDF information
 - Can be linked with colorimetric and spectral connection tags
- Colorimetric Connections (How does an observer see it?)
 - Connection provided by B in A2Bx/B2Ax transform tags
 - Can be linked with both Colorimetric and Spectral connection tags
- Spectral Connections (What is its relationship to light?)
 - Connection provided by B in D2Bx/B2Dx transform tags
 - Can be linked with both Colorimetric and Spectral connection tags
- Multiplex Connections (What is it?)
 - Connection provided by M in A2M0, M2A0, M2B0, and M2A0 transform tags
 - M2B0 tags can be connected to B2Ax Colorimetric connection tags
 - M2SO tags can be connected to B2Dx Spectral connection tags
- BRDF Connections
 - Profile transforms provided in BRDF tags
- Either Colorimetric or Spectral tags (or both) can be defined in the same profile
- Input class profiles can optionally include Multiplex (A2M0) tag in the same profile

iccMAX Color Spaces

- Colorimetric Profile Connection Spaces
 - Same as defined in ICC.1 (XYZ and L*a*b*)
 - Observer and Illuminant can vary as defined by spectral viewing conditions tag
- New Extended Color Space Signatures Types
 - Allow from 1 to 65535 channels to be defined
 - Upper 16 bits contain two text characters defining color space type (no conflicts with existing color spaces)
 - Lower 16 bits contain binary value of number of channels
 - Represented in specification as six character string in double quotes with first two characters defining the color space type followed by 4 hexadecimal digits
- Device Color Spaces
 - Color space signatures as defined in ICC.1
 - Additional extended N-channel color space signatures defined
 - Color space type "nc" in upper 16 bits, number of channels in lower 16 bits
 - "nc0001" through "ncFFFF"

iccMAX Connection Spaces

- New connection spaces are defined by separate fields in profile header with separate CMM connection logic
- Spectral Profile Connection Space Signatures
 - "rsXXXX" defines reflectance spectra with XXXX channels
 - "tsXXXX" defines transmission spectra with XXXX channels
 - "esXXXX" defines radiant/emission spectra with XXXX cannels
 - "bsXXXX" defines bi-spectral (fluorescent) spectra with XXXX channels
 - "smXXXX" defines sparse matrix (compressed fluorescent) spectra stored in space defined by XXXX 32-bit values
 - Additional fields in profile header provide spectral range information for spectral connection spaces
- Multiplex Connection Spaces
 - "mcXXXX" defines named "multiplex" values with XXXX channels
 - Additional tags define multiplex connection channel names and default values

iccMAX Header Connection Changes

Byte Position	Field length (bytes)	Field contents	Encoded as
0 to 3	4	Profile size	Ulnt32Number
4 to 7	4	Preferred CMM type	See 7.2.5
8 to 11	4	Profile version and sub-version number	See 7.2.6
12 to 15	4	Profile/Device class	See 7.2.7
16 to 19	4	Colour space of data (possibly a derived space)	See 7.2.8
20 to 23	4	PCS	See 7.2.9
24 to 35	12	Date and time this profile was first created	dateTimeNumber
36 to 39	4	'acsp' (61637370h) profile file signature	See 7.2.11
40 to 43	4	Primary platform signature	See 7.2.12
44 to 47	4	Profile flags to indicate various options for the CMM such as distributed processing and caching options and MCS connection requirements	See 7.2.13
48 to 51	4	Device manufacturer of the device for which this profile is created	See 7.2.14
52 to 55	4	Device model of the device for which this profile is created	See 7.2.15
56 to 63	8	Device attributes unique to the particular device setup such as media type	See 7.2.16
64 to 67	4	Rendering Intent	See 7.2.17
68 to 79	12	The nCIEXYZ values of the illuminant of the PCS.	XYZNumber
80 to 83	4	Profile creator signature	See 7.2.19
84 to 99	16	Profile ID	See 7.2.20
100 to 103	4	Spectral colour space signature	See 7.2.21
104 to 109	6	Spectral PCS wavelength range	spectralRange
110 to 115	6	Bi-spectral PCS wavelength range	Spectrainange
116 to 119	4	MCS signature	See 7.2.24
120 to 123	4	Profile/Device sub-class	See 7.2.25
124 to 127	4	Reserved bytes shall be set to zero (00h)	See 7.2.26

- PCS field defines Profile Connection Space for colorimetric rendering intent transform A2Bx/B2Ax tags
 - Arbitrary observer and illuminants supported
- Spectral PCS fields defines color space for rendering intent transform D2Bx/B2Dx tags
 - Spectral PCS range defines wavelength range
 - Bi-spectral PCS range defines excitation range when bi-spectral color space is used
- Multiplex Connection Space signature defines
 number of MCS channels
 - Profile flags define MCS channel connection requirements

iccMAX PCS Support

100	1 DCC C					
<u>ICC.1</u>	1 PCS Support From Lab	From XYZ	From Reflectance	From Transmittance/ Transmissive	From Radiant/ Emission	From Fluorescence
To Lab Yes		Yes	Using PCC	Using PCC	Using PCC	Using PCC
To XYZ	Yes	Yes	Using PCC	Using PCC	Using PCC	Using PCC
To Reflectance	No	No	Yes	Yes	Extract PCC illuminant	Apply then extract PCC illuminant
To Transmittance/ Transmissive	No	No	Yes	Yes	Extract PCC illuminant	Apply then extract PCC illuminant
To Radiant / Emission	No	No	Apply PCC Illuminant	Apply PCC illuminant	Yes	Apply PCC illuminant
To Fluorescence	No	No No		No	No	Exact match required

Operations to perform conversions are outlined in Appendix A of iccMAX Specification

PCC = Profile Connection Conditions

iccMAX Profile Connection Conditions

Allows PCS data in profiles to use actual viewing conditions

No need for chromaticAdaptationTag!

- Profile Connection Conditions provide additional information for PCS processing
- Spectral and custom colorimetric PCS processing is performed using Profile Connection Conditions (PCC)
- PCC information can come from either the profile or externally provided to the Color Management Module (CMM)
- Profile Connection Conditions are NOT required for legacy colorimetric PCS processing

Profile Connection Conditions (PCC)

- Profile Connection Conditions (PCC) comprise of:
 - Header color space and spectral PCS metadata
 - Three new tags:
 - spectralViewingConditionsTag defines a *spectralViewingConditionsType* (a new tag type) based tag that spectrally specifies observer and illuminant
 - Illuminant and observer signatures used to determine PCS pass through connection
 - Colorimetric information about surround
 - customToStandardPcsTag defines a MultiProcessElement based tag to convert from custom PCS colorimetry to standard D50 / 2-degree observer colorimetry
 - standardToCustomPcsTag defines a MultiProcessElement based tag to convert from standard D50 / 2-dgree observer colorimetry to custom PCS colorimetry
- PCC information is required whenever PCS is NOT standard D50 using 2-degree observer
 - Provides for interoperability to connect different viewing conditions
 - Provides flexibility for when and how conversions are made
 - Provides colorimetric conversion transforms for changes in observer and / or illuminant

PCC c2sp /s2cp Tag Transforms

- Appearance matching can be defined by PCC using CAM based MultiProcessElement tags implementing either an Appearance Model based conversion or a matrix based CAT
 - Account for changes in illuminant and/or surround
 - Cannot account for changes in physical observer as corresponding colors do not provide prediction of appearance between physical observers
 - A CAT based on corresponding color data may be possible to predict changes in "observer" due to field size effect changes
- Material matching can be defined by PCC using MultiProcessElement tags each implemented with a matrix based MAT
 - Also accounts for changes in illuminant, but is more appropriate for inter-observer conversions
 - Does not predict actual changes of spectral reflectances (spectral workflow needed)
 - Wpt (Waypoint) normalization based MATs can provide good candidates for defining a PCC c2sp and s2cp transforms

Spectral and Colorimetric PCS Conversion

iccMAX Spectral Profile Connection Workflows

Basic Multi-Spectral Workflow

Extended Spectral PCS Workflow

Spectral to Colorimetric Workflow

Spectral to Legacy Workflow

Colorimetric Profile Connection Workflows

Legacy Colorimetric Workflow

Alternate Colorimetric Workflow

Legacy to Custom Colorimetric Workflow

Custom to Legacy Workflow

Custom to Custom Colorimetric Workflow

Conversion of Colorimetry between Illuminants and Observers

Sensor values change when Illuminant or Observer changes

- Figure of Tristimulus values for same Munsell glossy reflectances for 2-degree observer under Illuminant A (red), D65 (black), D100 (blue)
- Similar changes occur for changes in observer
- To make conversions What is needed is method of determining "color equivalency" for change in observer and/or illuminant

Chromatic Adaptation

Chromatic Adaptation

Chromatic Adaptation

Material Adjustment

Adjustments for different observing conditions

Adjustments for different observing conditions

Adjustments for different observing conditions

XYZ Normalization Color Equivalency

- Figure depicts "wrong-vonKries" white balancing of Munsell glossy reflectances for 2-degree observer under Illuminant A- red, D65 black, D100 Blue
- This demonstrates the color equivalency use by XYZ to CIELAB equations

Color Equivalency Representation of CAT02

- Figure depicts CATO2 normalization of Munsell glossy reflectances for 2-deg observer under Illuminant A- red, D65 black, D100 Blue
- CATO2 predicts corresponding color not material color

Wpt (Waypoint) Normalization

(Described in Derhak PhD - See http://scholarworks.rit.edu/theses/8789/)

- Figure depicts process of Wpt normalization applied to Munsell glossy reflectances for 2-deg observer under Illuminant A- red, D65 black, D100 Blue
- A Wpt normalization based MAT can be used (but is not required part of iccMAX specification) to predict material color changes – not corresponding color

Color Equivalency Representation of Wpt (Waypoint) Normalization

Wpt (Waypoint) normalization of Munsell glossy reflectances for 2-degree observer (black) 10-degree observer (blue) for F11: x', Illuminant A: +'s, Illuminant C: points, Illuminant E: circles, D50: squares, D65: diamonds

Example Wpt Normalization Matrices

Standard 2° Observer

Standard 10° Observer

-0.06265 1.03839 0.02669 -0.03390 1.06622 4.68561 -4.82563 0.37293 4.98326 -5.37826 0.28350 1.50053 -2.15101 0.48282 1.35138 0.02964 0.97487 -0.00280 0.07837 0.99300 0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 -0.07407 1.05436 0.01971 -0.04091 1.08336 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 4.38611 -4.63611 0.32299 4.73751 -5.2721						
0.28350 1.50053 -2.15101 0.48282 1.35138 0.02964 0.97487 -0.00280 0.07837 0.99300 0.483916 -4.73122 0.12117 5.12107 -5.27209 0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 4.38611 -4.63611 0.32299 4.73751 -5.27217		-0.06265	1.03839	0.02669	-0.03390	1.06622
0.02964 0.97487 -0.00280 0.07837 0.99300 4.83916 -4.73122 0.12117 5.12107 -5.27209 0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 A -0.33810 1.30006 0.20048 -0.36233 1.37188 A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217	D50	4.68561	-4.82563	0.37293	4.98326	-5.37826
065 4.83916 -4.73122 0.12117 5.12107 -5.27209 0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 A -0.33810 1.30006 0.20048 -0.36233 1.37188 A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 511 4.38611 -4.63611 0.32299 4.73751 -5.27217		0.28350	1.50053	-2.15101	0.48282	1.35138
Dos 0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 E 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 A -0.33810 1.30006 0.20048 -0.36233 1.37188 A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217		0.02964	0.97487	-0.00280	0.07837	0.99300
0.54248 1.30671 -1.67368 0.78225 1.13989 -0.07407 1.05436 0.01971 -0.04091 1.08336 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217	DEE	4.83916	-4.73122	0.12117	5.12107	-5.27209
E 4.61340 -4.78331 0.16986 4.89821 -5.31600 0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217	J 03	0.54248	1.30671	-1.67368	0.78225	1.13989
C 1.3340 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 C 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217		-0.07407	1.05436	0.01971	-0.04091	1.08336
0.37630 1.40421 -1.78050 0.59264 1.24324 0.00000 1.00000 0.00000 0.04888 1.02268 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217		4.61340	-4.78331	0.16986	4.89821	-5.31600
C 4.84591 -4.80280 0.04258 5.14072 -5.36078 0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -1 4.38611 -4.63611 0.32299 4.73751 -5.27217		0.37630	1.40421	-1.78050	0.59264	1.24324
0.51873 1.30963 -1.53805 0.75497 1.15250 -0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 +11 4.38611 -4.63611 0.32299 4.73751 -5.27217		0.00000	1.00000	0.00000	0.04888	1.02268
-0.33810 1.30006 0.20048 -0.36233 1.37188 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 -11 4.38611 -4.63611 0.32299 4.73751 -5.27217	\mathbf{C}	4.84591	-4.80280	0.04258	5.14072	-5.36078
A 4.40232 -5.32134 1.36425 4.76102 -5.94588 -0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 11 4.38611 -4.63611 0.32299 4.73751 -5.27217		0.51873	1.30963	-1.53805	0.75497	1.15250
-0.41103 2.17849 -4.85343 -0.29792 2.07286 -0.12366 1.05659 0.10608 -0.13853 1.11178 4.38611 -4.63611 0.32299 4.73751 -5.27217		-0.33810	1.30006	0.20048	-0.36233	1.37188
-0.12366 1.05659 0.10608 -0.13853 1.11178 -4.63611 0.32299 4.73751 -5.27217	Δ	4.40232	-5.32134	1.36425	4.76102	-5.94588
11 4.38611 -4.63611 0.32299 4.73751 -5.27217	, ,	-0.41103	2.17849	-4.85343	-0.29792	2.07286
1130011 1133011		-0.12366	1.05659	0.10608	-0.13853	1.11178
	F11	4.38611	-4.63611	0.32299	4.73751	-5.27217
	1. TT	0.37476	1.29098	-2.59413	0.47386	1.20030

Example MAT creation using Wpt Normalization Matrices

0.69841	0.10047	0.24869	-0.06265	1.03839	0.02669	-1	-0.36233	1.37188	0.08758
-0.30721	1.32784	0.03867	= 4.68561	-4.82563	0.37293	×	4.76102	-5.94588	1.85883
0.01624	-0.02413	2.36015	0.28350	1.50053	-2.15101		-0.29792	2.07286	-4.94818

A, 10° to D50, 2° MAT

Inverse D50, 2°

A, 10°

Spectral PCS Math and Conversions

Spectral Resampling

- Illuminants/light sources, emission/radiance, reflectance factor, transmission factor, and observer color matching functions are all expressed as vectors/matrices that are sampled as wavelengths over a range
- The math requires that the spectral sampling is identical when combining or manipulating these vectors/matrices
- Resampling can be performed as a matrix operation

Integrating to Get Sensor Excitations

- Integral computation of the *i*th Sensor Excitation
 - $c_i = 683 \int C_i(\lambda) L(\lambda) d\lambda$
 - Intensity Radiance/Emission
 - $c_i = k \int C_i(\lambda) L(\lambda) d\lambda$
 - Relative Radiance/Emission
 - $c_i = k \int C_i(\lambda) O(\lambda) L(\lambda) d\lambda$
 - Relative using reflectance
 - $c_i = k \int \int C_i(\lambda) O(\lambda, \omega) L(\omega) d\lambda d\omega$
 - Relative using fluorescence

Sensor Excitations using Linear Equations

- Matrix/vector computation of Sensor Excitations (c)
 - c = 683Cl
 - Intensity Radiance/Emission
 - $\mathbf{c} = k\mathbf{C}\mathbf{l}$
 - Relative Radiance/Emission
 - $\mathbf{c} = k\mathbf{CLr}$
 - Relative using reflectance
 - Light SPD represented as diagonal matrix L
 - $\mathbf{c} = k\mathbf{COl}$
 - Reflectance factor represented as a diagonal matrix **0**
 - Off diagonal entries in matrix **0** represent fluorescence
 - Normalization factor k can be omitted if directly applied to C matrix

Observer Independent Color Descriptions

 $r_{\lambda} \cong t_{\lambda}$

Matrix / Vector:

$$e = 0l$$

Scalar by Wavelength: $e_{\lambda} = r_{\lambda} l_{\lambda}$

$$r_{\lambda} = \frac{e_{\lambda}}{l_{\lambda}}$$

$$e = 01$$

$$e_{\lambda} = t_{\lambda} l_{\lambda}$$

$$t_{\lambda} = \frac{e_{\lambda}}{l_{\lambda}}$$

Observer Independent Color Descriptions

<u>Transmission+Fluorescence</u>

Matrix / Vector:

$$e = 01$$

$$e = 0$$

Works for Fluorescence when **O** has off diagonal terms

Late-Binding Spectral to Colorimetric Processing

Late-Binding Spectral Conversion

- Spectral PCS processing can have significant processing overhead
- Processing elements can be used that encode spectral information that is converted to colorimetric data for processing by the CMM at the point when profiles are linked
- Provides late-binding of observer and/or illuminant
- Provides for efficient processing of profiles since only colorimetric transforms are used
- PCC provides information for spectral to colorimetric conversions
 - Only a single PCC is used for late-binding purposes

Custom Observer Display Matching

Soft Proofing

This allows for both observer and illumination of printed output to vary

Colorimetric PCC handling

- Checking for use of Late-Binding processing elements is required
 - If both profiles have use late-binding elements then the PCC selected for the first profile will be applied to both profiles.
 - If only one profile has late-binding elements then PCC will come from the profile that does NOT have the late-binding elements.
 - Otherwise, each profile will only use its embedded PCC for tag processing initialization, and standard inter-colorimetric PCS processing is performed

Multiplex Connection Spaces

Multiplex Connection Workflows

- Some workflows require a connection based upon a description that defines what the color channels are rather that how they look or are related to light (PCS's)
- Examples include:
 - Pigment Identification
 - Going from Multi-spectral capture to Pigment identification to Visualization of pigments
 - Medical imaging
 - Scanning to RGB + channels that provide bio-marker information to visualization of scan with bio-markers
 - Ink Visualization
 - Going from printed ink channels to visualization of different ink orders or use of spot inks
- Could be implemented as Device Link Profile but number of channels and channel order are fixed

Multiplex Connection Spaces

- Can conceptually be thought of as multiple "device like" channels connected with flexibile routing
- Like device channels, encoding of MCS channel data values is not explicitly defined
 - Encoding of MCS channel values allowed to be defined by domain specific use cases
 - Potentially documented via ICC registry of encodings for MCS channel names
- An MCS is completely separate from a PCS and therefore has no computational relationship to a PCS
 - Relationships are completely provided by MCS to PCS transform tags in profile based on multiProcessElementType
- Rules for connecting profiles and routing channel data are well defined to be clearly implemented by a CMM

MCS Connection Overview

- Three new profile classes MID/MLNK/MVIS
- Input class extended to allow for A2M0 tag
- Header and Tags define MCS connection

Setting up Multiplex Connection Spaces

- MCS field in header specifies number of MCS channels
- MCS subset requirement flag in profileFlags field of profile header
 - When set the MCS channels defined by the multiplexIdentificationArrayTag must be a subset of the channels defined in the profile being connected to
 - Profile linking is prescribed to fail if MCS subset requirements are not met
- multiplexIdentificationArrayTag: signature 'mida' (6d696461h)
 - Provides means of uniquely describing each multiplex channel in MCS
 - Used for routing channel data between profiles
- Optional multiplexIDefaultValuesTag: signature 'mdv' (6d647620h)
 - Provides default values for when source multiplex channel values are not available.
 - A default value of zero is used if multiplexDefaultValuesTag is not defined

Multiplex Channel Connection

- MCS connection allowed between source profiles with AToM0Tag [Input class profiles / Multiplex Identification profiles] and destination Multiplex Visualization (MVIS) or Multiplex Link (MLNK) profiles
- Apply MCS subset requirements
 - If profile has MCS subset flag set then it's MCS channels need to be a proper subset of MCS channels in the connected profile
 - This ensures interoperability where channel requirements are needed
- CMM simply passes channel data directly between source profile to destination profile for channels with same multiplex channel identifications
- Use multiplexDefaultValuesTag values as input for MVIS/MLNK MCS channels not present in source MID profile
 - This assumes independence of multiplex channels
 - Use zero if multiplexDefaultValuesTag not present
- Ignore AToM0Tag MCS channels not present in MVIS/MLNK profile

MCS Connection Example

In Conclusion

Making Connections with iccMAX

- iccMAX provides various ways of communicating about color:
 - In terms of visual appearance
 - In terms of physical properties of light and objects
 - Allowing for late binding and adjustment of both observer and/or illuminant
- iccMAX separates color management process into separate stages to allow for open, cross-platform implementation
 - Device to/from color description transformations (inside profile transforms)
 - Conversion between ways of describing color (inside CMM with inter-PCS conversion)
 - This conversion is controlled via Profile Connection Conditions (PCC) either in profiles or separately to CMM
- iccMAX also offers new flexible ways of connecting device like named multiplex color channels
 - When color is described by "What is it?" rather then "What does it look like?" or "How does it interact with light?"

Thank You!

