UNIVERSITY OF FORWARD THINKING WESTMINSTER#

Bridging the gap between image quality and aesthetics

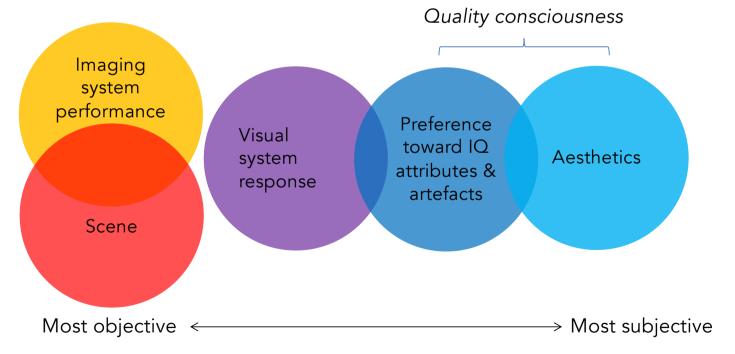
Prof. Sophie Triantaphillidou

Director, Computational Vision and Imaging Technology (CVIT) School of Computer Science & Engineering University of Westminster, London, UK triants@westminster.ac.uk

ICC London Meeting. April 2023

Image Quality

"the perceived 'goodness' (value) of an image, viewed by an observer, under a given environment and context"



Adapted from Fry, E., Triantaphillidou, S., et. al 2019

Subjective

- Visual psychophysics
- Large number of observers
- Range of scene contents

Subjective

- Visual psychophysics
- Large number of observers
- Range of scene contents

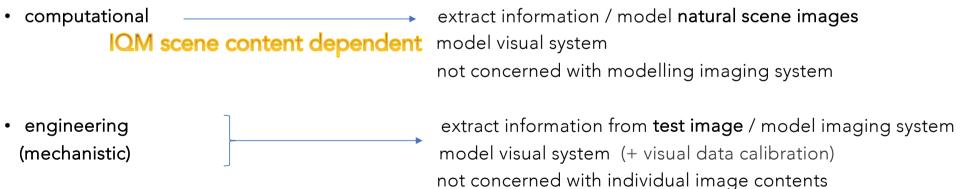
Objective – Image Quality Models/Metrics

- computational
 extract information / model natural scene images model visual system not concerned with modelling imaging system
 engineering (mechanistic)
 extract information from test image / model imaging system model visual system (+ visual data calibration)
 - not concerned with individual image contents

Subjective

- Visual psychophysics
- Large number of observers
- Range of scene contents

Objective – Image Quality Models/Metrics



Subjective

- Visual psychophysics
- Large number of observers
- Range of scene contents

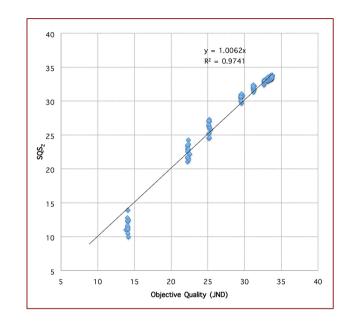
Objective – Image Quality Models/Metrics

computational extract information / model natural scene images model visual system not concerned with modelling imaging system
 engineering (mechanistic) extract information from test image / model imaging system model visual system (+ visual data calibration) not concerned with individual image contents

IQM system-dependent but scene content independent

Subjective

- Visual psychophysics
- Large number of observers
- Range of scene contents



Objective – Image Quality Models/Metrics

 computational ______ extract information / IQM scene content dependent model visual system

extract information / model **natural scene images** model visual system

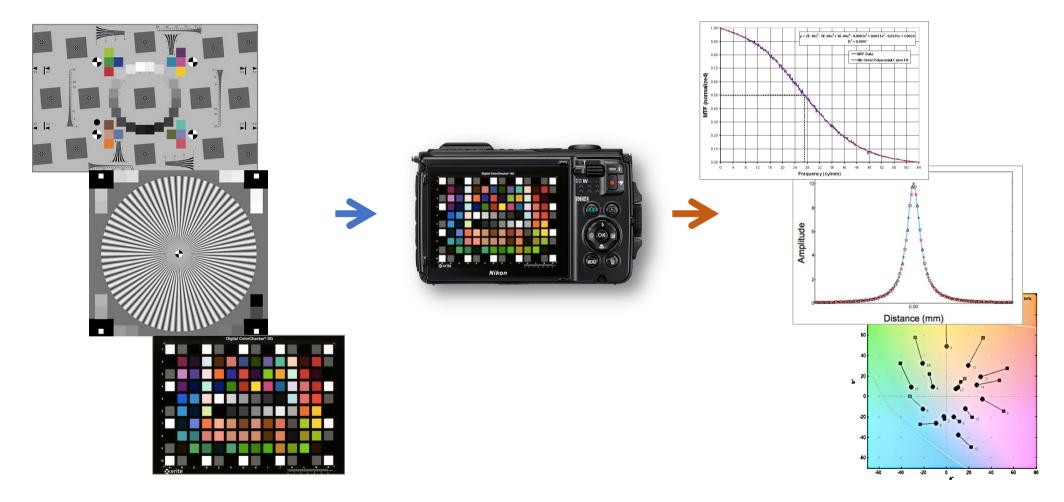
not concerned with modelling imaging system

 engineering (mechanistic)

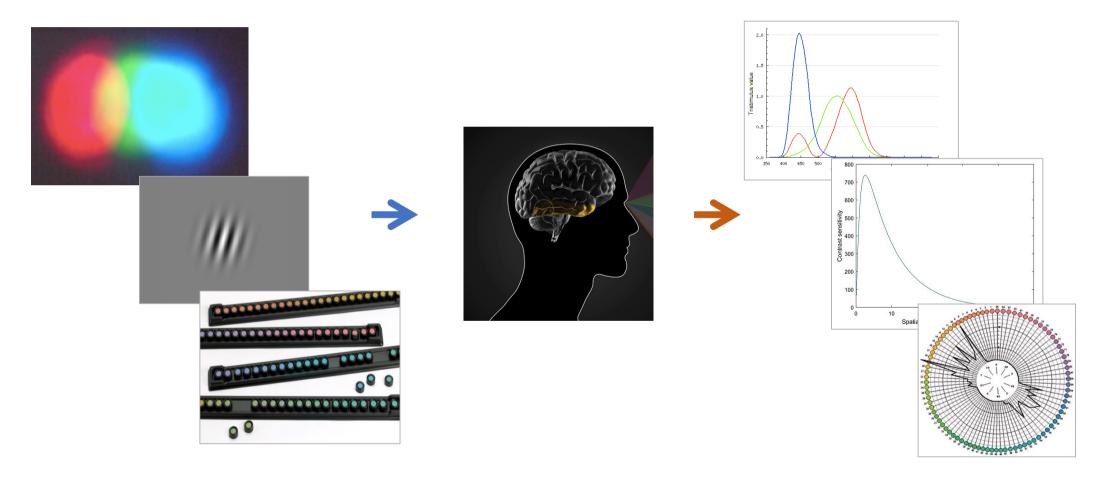
extract information from **test image** / model imaging system model visual system (+ visual data calibration) not concerned with individual image contents

IQM system-dependent but scene content independent

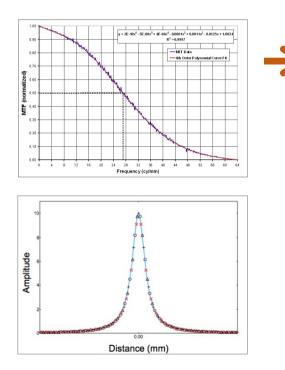
Imaging system performance measurement



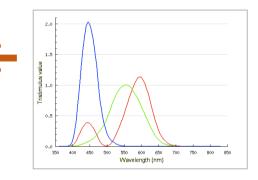
Visual system measurement

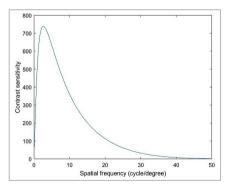


Engineering image quality metrics / models

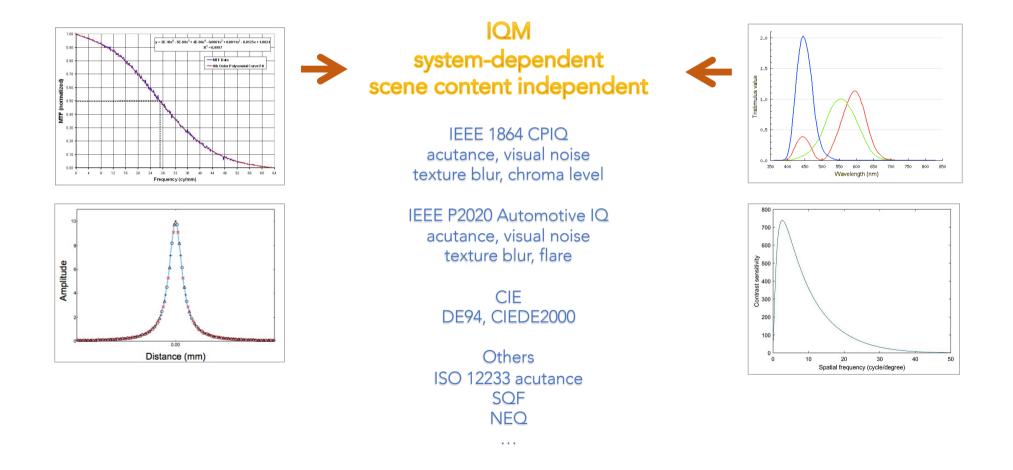


IQM system-dependent scene content independent

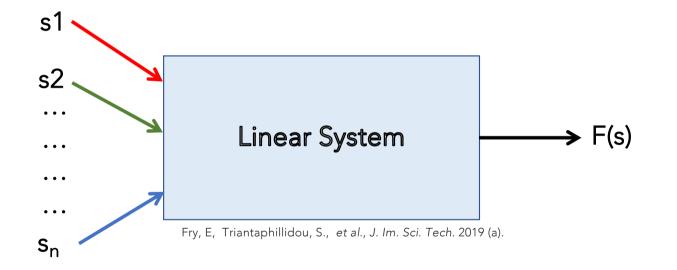




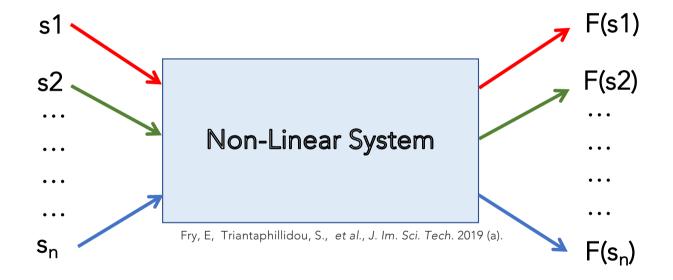
Engineering image quality modeling



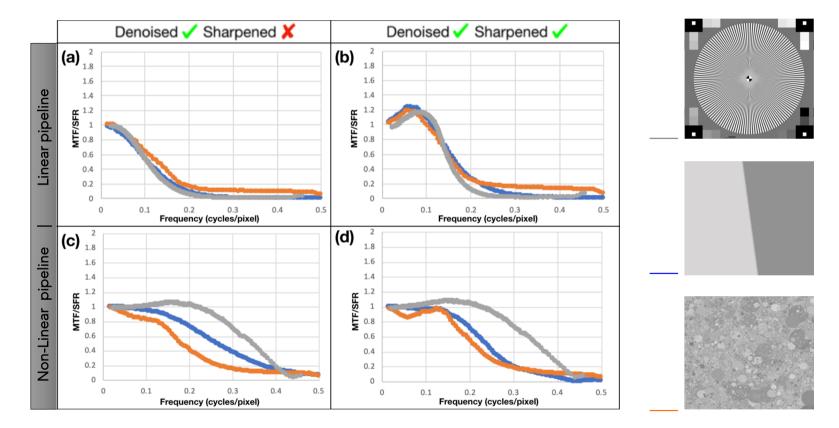
Linear vs non-linear content aware systems



Linear vs non-linear content aware systems



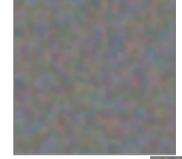
Measuring camera sharpness/resolution - MTF



Fry, E., PhD Thesis, 2020

Scene dependent noise variations

Input



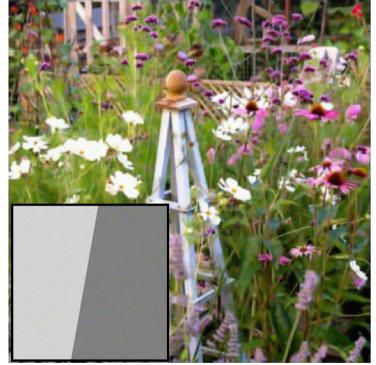
Output noise (after denoising)



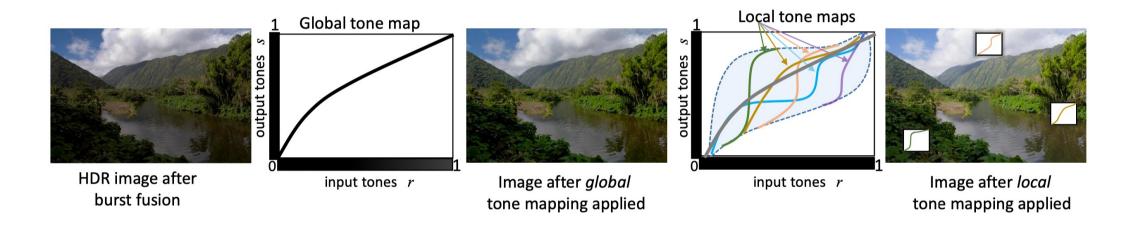
Scene dependent sharpness variations

Input

Output image (after denoising)



Scene dependent tone variations



Mobile Computational Photography: A Tour Delbracio et al., CVPR, 2021

Scene-and-process dependent IQ models

Use imaging performance measures:

- Conform to current (industry) standards
- Account for non-linear, content aware imaging system performance

Scene dependent image quality modeling

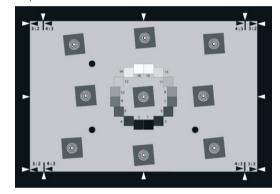
Use imaging performance measures:

- Conform to current (industry) standards
- Account for non-linear, content aware imaging system performance

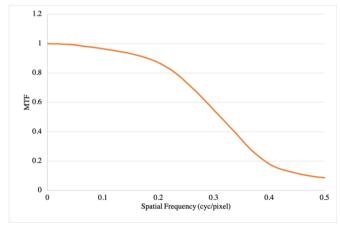
Use scene dependent visual system models:

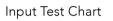
- Such as the spatial CSF
- While accounting for scene content parameters

Input Test Chart

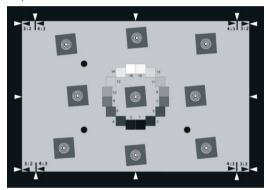


Measured MTF

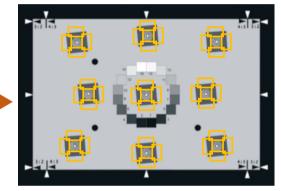




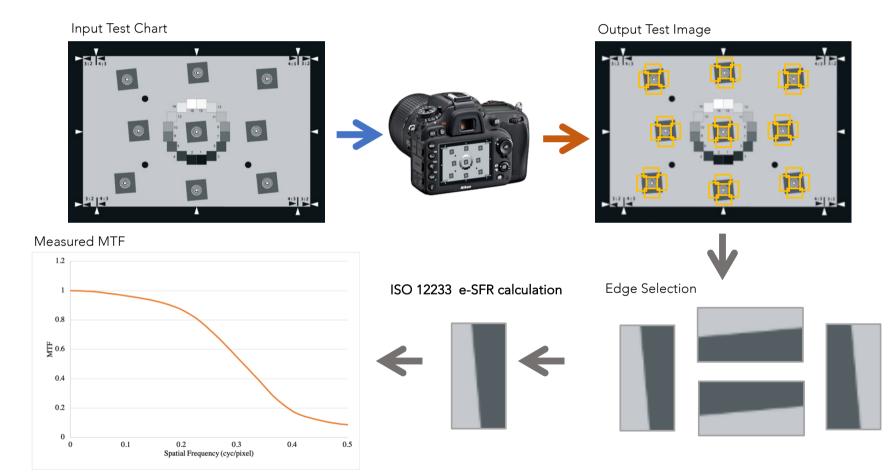
Input Test Chart



Output Test Image

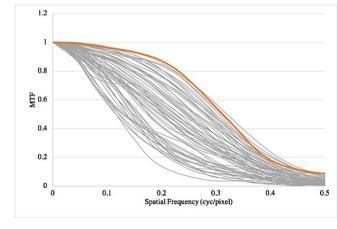


Edge Selection

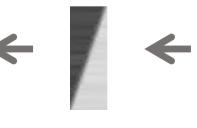


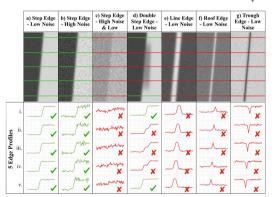
Input Natural Scene

Natural scene MTF (NS-SFR)



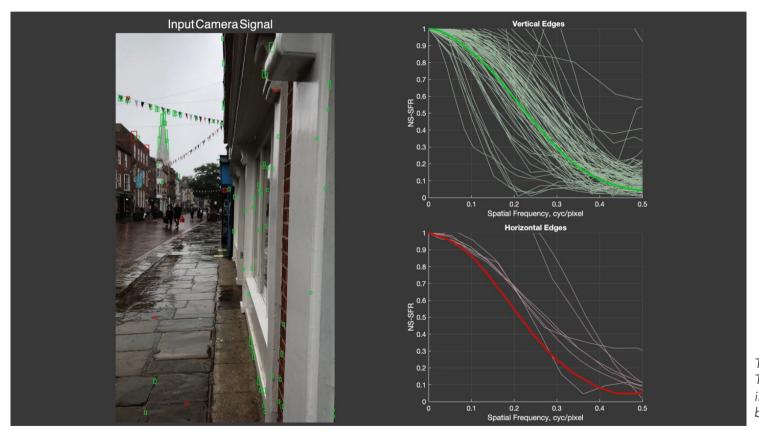
ISO 12233 e-SFR calculation



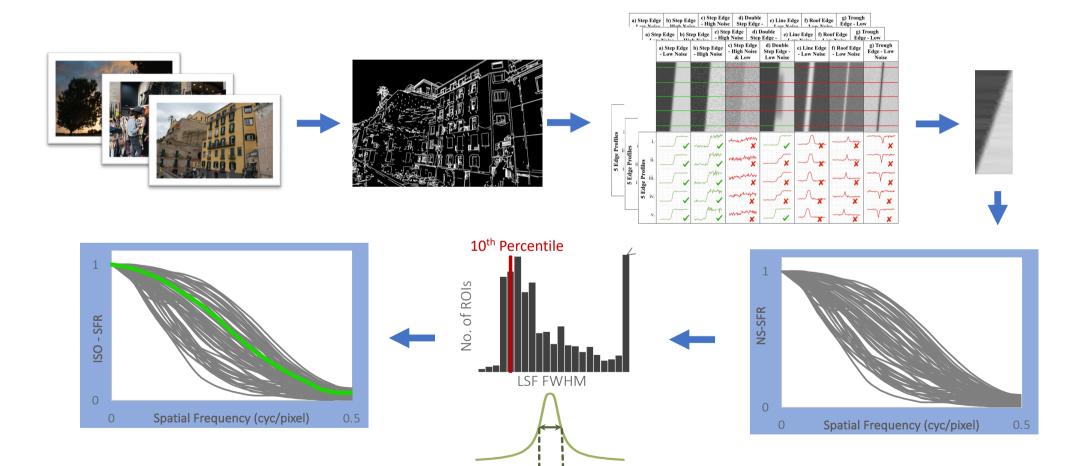


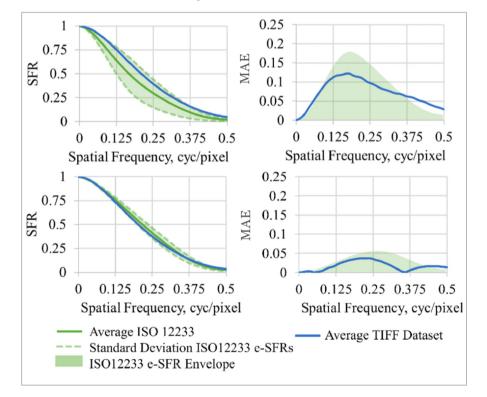
Edge Selection, Isolation and Verification

Edge Image

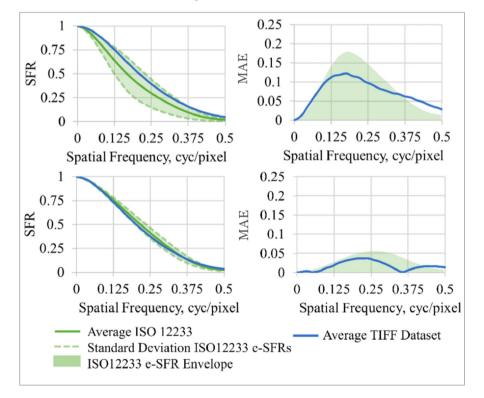


This is a concept demo. The processing was not implemented live. by Oliver vanZwanenberg



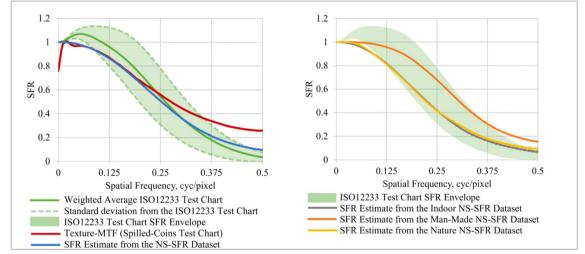


2 x DSLR camera systems (near-linear)



2 x DSLR camera systems (near-linear)

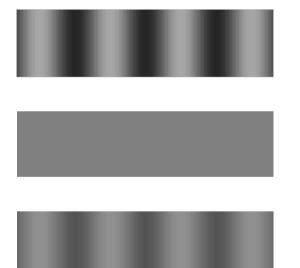
iPhone camera system (highly non-linear)



- van Zwanenberg, O., Triantaphillidou, S., Jenkin, R. and Psarrou, A. (2021), *Estimation of ISO12233 Edge Spatial Frequency Response from Natural Scene Derived Step-Edge Data*, Journal of Imaging Science and Technology, 65 (6), pp. 60402-1-60402-16.
- van Zwanenberg, O., Triantaphillidou, S., Psarrou, A. and Jenkin, R, (2021), Analysis of Natural Scene Derived Spatial Frequency Responses for Estimating Camera ISO12233 Slanted-edge Performance, Journal of Imaging Science and Technology, 65 (6), pp 60405-1 – 60405-12.

Contrast Sensitivity Function (CSF)

Threshold contrast sensitivity



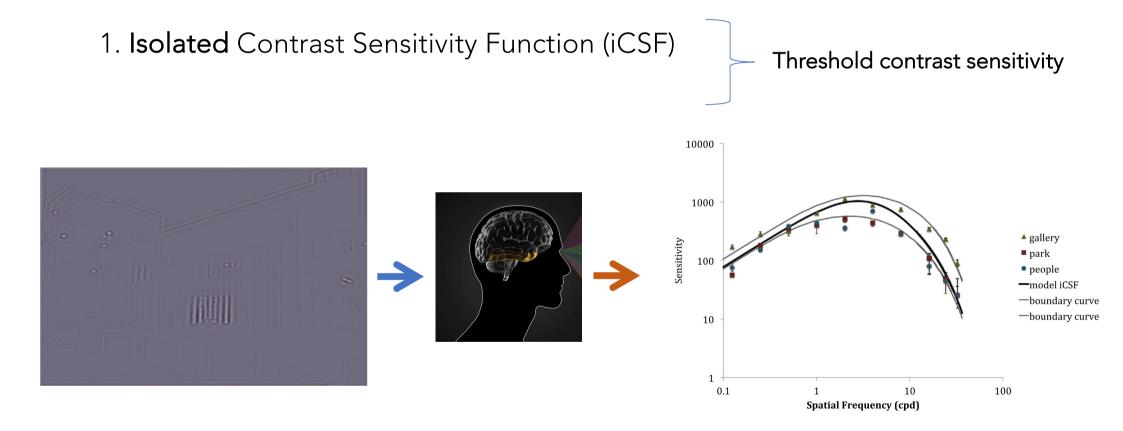
Contrast Sensitivity Function (CSF) - Three

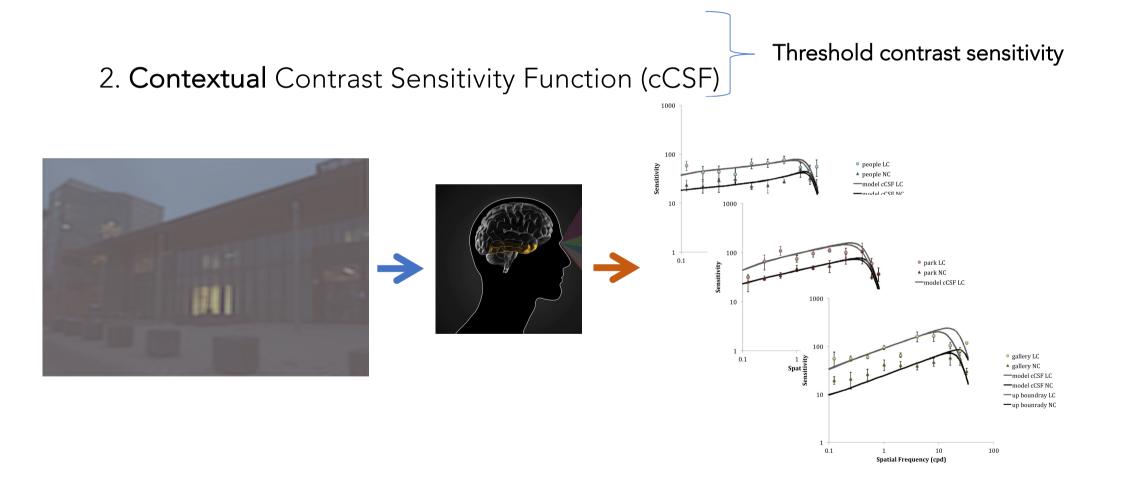
Threshold contrast sensitivity

Spatial frequency cycles/degree

Isolated Contrast Sensitivity Function (iCSF)

Threshold contrast sensitivity





Isolated **Contrast Sensitivity** Function (iCSF) Contextual **Contrast Sensitivity** Function (cCSF)

Triantaphillidou, S., Jarvis, J. R., Psarrou, A. and Gupta, G. (2019) *Contrast sensitivity in images of natural scenes*, Signal Process Image, Signal Processing: Image Communication, 75, pp. 64-75.

Threshold contrast sensitivity Models account for scene contrast spectra

Isolated **Contrast Sensitivity** Function (iCSF) Contextual **Contrast Sensitivity** Function (cCSF)

Triantaphillidou, S., Jarvis, J. R., Psarrou, A. and Gupta, G. (2019) *Contrast sensitivity in images of natural scenes*, Signal Process Image, Signal Processing: Image Communication, 75, pp. 64-75.

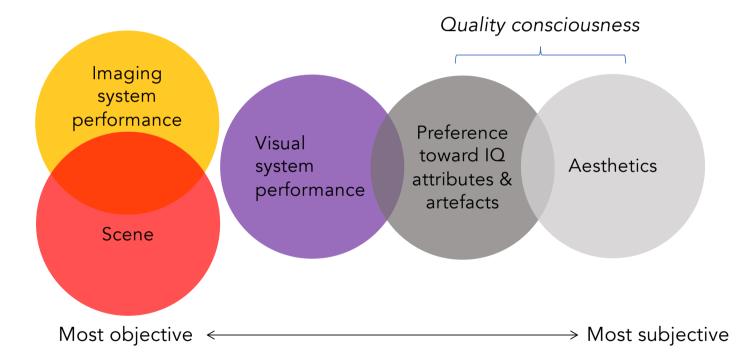
Isolated Contrast Discrimination Function Contextual Contrast Discrimination Functions

Jarvis, J., Triantaphillidou, S. and Gupta, G. (2022), *Contrast discrimination in images of natural scenes*, Journal of the Optical Society of America A. 39 (6), pp. B50-B64.

Threshold contrast sensitivity Models account for scene contrast spectra

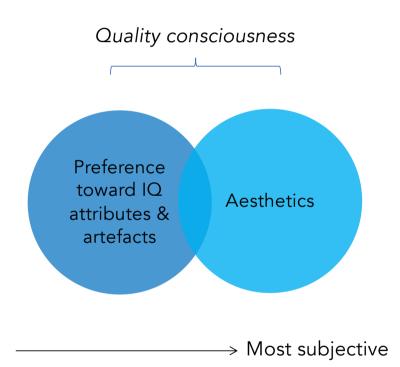
Supra-threshold sensitivity Models account for cCSF & scene contrast spectra

Image Quality modeling



Preference and Aesthetics

- Context dependent
- Culture dependent
- Industry/manufacturer dependent
- Personal
- Change with time
 - Fashion trends
 - Imaging system evolution



Computational aesthetics

"aim to identify or evaluate visual aesthetic expressions in images using algorithms"

- Composition
 - Rule of thirds
 - Golden ratio
 - Focus, focal length, depth of field
- Features
 - Colour
 - Exposure/luminance
 - Edges/textures/sharpness/contrast
- Contents

• Analysis of **contemporary** photographic collections to track **preference & aesthetics**

IMAGE

SOURCE

plainpicture

Millennium Images

- Large collections
- Commercial photographic agencies (providing images worldwide)
- 40-50 years period
- Curated image collections (aesthetic value)

sciencephotolibrary

• Compare findings with literature (art & science)

nature picture library

A. Nature

- 1. Wildlife
- 2. Seasonal Landscapes
- 3. Underwater Seascapes
- 4. Night Sky
- 5. Aerial Landscapes
- 6. Close-ups

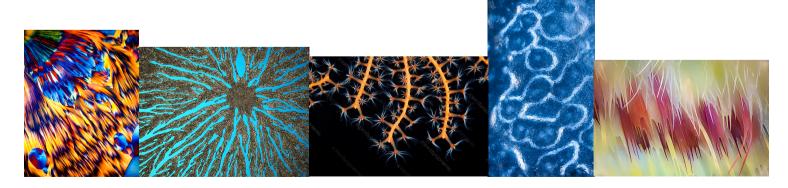
B. People

- 1. Portraits (close ups)
- 2. Groups of people
- C. Satellite

D. Abstracts

- 1. Microscopic
- 2. Macroscopic
- 3. Textures/detail

sciencephotolibrary



A. Nature

- 1. Wildlife
- 2. Seasonal Landscapes
- 3. Underwater Seascapes
- 4. Night Sky
- 5. Aerial Landscapes
- 6. Close-ups

B. People

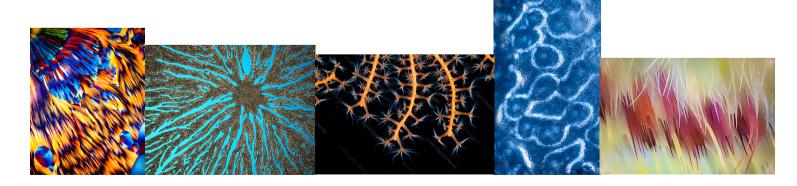
- 1. Portraits (close ups)
- 2. Groups of people

C. Satellite

D. Abstracts

- . Microscopic
- 2. Macroscopic
- 3. Textures/detail

sciencephotolibrary



Examine color computational aesthetic features

- Colorfulness (CFL) linear combination of chromaticity variance and chroma magnitude
- Color harmony (CH) based on the frequency of appearance of color patterns
- Opposing or opponent color (OC)
- Complementary colors (CC)
- Dominant colour palettes (PCP) based on clustering, and subsequent analysis

Discover

- How "portrait" skin tone rendering varied with time & variation between photo agencies
 - Decade trends
 - Culture trends
 - Effect of medium

Discover

- How "portrait" skin tone rendering varied with time & variation between photo agencies
 - Decade trends
 - Culture trends
 - Effect of medium
- Colour trends in "abstracts" category are they identified, any discoveries?
 - Balance
 - Rhythm/pattern
 - Variety
 - Contrast
 - Movement
 - Surprise

Further work will examine

- Most (all) categories
- Attributes
 - image complexity
 - rule of thirds
 - golden ratio
 - diagonal and leading lines
 - focus and depth of field
- Hand crafted features and potential AI tools
- Compare computational findings with literature findings on photo aesthetics

Summary

- Image quality involves scene contents, imaging chain, human vision and cognition
- Image quality modelling, viewed from a **mechanistic** viewpoint, requires investigation of all abovementioned elements and their interrelationships
- Developed scene-and-system-dependent **performance measures** (spatial -> MTF and NPS)
- Developed scene-dependent (**spatial**) visual models
- Initial testing on benefit of such models in IQMs modeling is very positive
- Moving from scene-dependent imaging performance modelling to modelling preference and aesthetics bridges a gap
- Track aesthetics in contemporary photography using computational means and photo collections with known aesthetic values

Colleagues

Dr Aleka Psarrou, Reader, UoW Dr John Jarvis, visiting Professor, UoW Dr Robin Jenkin, visiting Professor, UoW (Nvidia, CA)

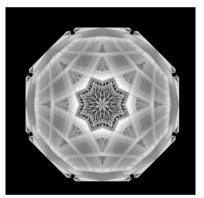


Photo: Edward Fry

Dr Oliver vanZwanenbegr, PhD graduate (now @ Onsemi, UK) Dr Edward Fry, PhD graduate (now @ Apple, CA) Adela Shah, PhD student

Thank you!

- van Zwanenberg, O., Triantaphillidou, S. and Jenkin, R. (2023), A tool for deriving camera spatial frequency response from natural scenes (NS-SFR), IS&T Electronic Imaging Symposium: Image Quality & System Performance conference XX, San Francisco, California, USA.
- Jarvis, J., Triantaphillidou, S. and Gupta, G. (2022), Contrast discrimination in images of natural scenes, Journal of the Optical Society of America A. 39 (6), pp. B50-B64.
- van Zwanenberg, O., Triantaphillidou, S., Jenkin, R. and Psarrou, A. (2021), Estimation of ISO12233 Edge Spatial Frequency Response from Natural Scene Derived Step-Edge Data, Journal of Imaging Science and Technology, 65 (6), pp. 60402-1-60402-16.
- van Zwanenberg, O., Triantaphillidou, S., Psarrou, A. and Jenkin, R, (2021), Analysis of Natural Scene Derived Spatial Frequency Responses for Estimating Camera ISO12233 Slanted-edge Performance, Journal of Imaging Science and Technology, 65 (6), pp 60405-1 – 60405-12.
- van Zwanenberg, O., Triantaphillidou, S., Jenkin, R. and Psarrou, A. (2021), Natural Scene Derived Camera Edge Spatial Frequency Response for Autonomous Vision Systems, IS&T London Imaging Meeting 2021.
- van Zwanenberg, O., Triantaphillidou, S., Jenkin, R. and Psarrou, A. (2020), Camera System Performance Derived from Natural Sciences, IS&T Electronic Imaging Symposium: Image Quality & System Performance conference, San Francisco, California, USA. (Best conference paper award)
- Fry, E. W. S., Triantaphillidou, S., Jenkin, R. B., Jacobson, R. E. and Jarvis, J. R. (2020), Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems, In: IS&T Electronic Imaging Symposium: Image Quality & System Performance conference, San Francisco, California, USA.
- Fry, E. W. S., Triantaphillidou, S., Jenkin, R. B., Jacobson, R. E. and Jarvis, J. R. (2019), Scene-and-Process-Dependent Spatial Image Quality Metrics, Journal of Imaging Science & Technology, 9, 60407-1-60407-13.
- Fry, E. W. S., Triantaphillidou, S., Jenkin, R. B., Jacobson, R. E. and Jarvis, J. R. (2019), Validation of Modulation Transfer Functions and Noise Power Spectra from natural scenes, Journal of Imaging Science & Technology, 9, 60406-1-60406-11.
- Van Zwanenberg, O., Triantaphillidou, S., Jenkin, R. and Psarrou, A. (2019), Edge detection techniques for quantifying spatial imaging system performance and image quality, ACM/IEEE Conference on Computer Vision and Pattern Recognition (IEEE/ CFV CVPR 2019). Long Beach, California 15 – 21 Jun 2019.
- Triantaphillidou, S., Jarvis, J. R., Psarrou, A. and Gupta, G. (2019) Contrast sensitivity in images of natural scenes, Signal Process Image, Signal Processing: Image Communication, 75, pp. 64-75.
- Fry, E., Triantaphillidou, S., Jacobson, R., Jarvis, J. and Jenkin, R. B. (2018), Bridging the Gap Between Imaging Performance and Image Quality Measures. In: IS&T Electronic Imaging Symposium 2018 – Image Quality System Performance XV, San Francisco, CA, USA. (Best student paper award)