

ICC Display & 3D Print Meeting MAY 06 2016

Color Gamut Mapping for 3D Printing

Speaker: Yuan-Peng Pi (皮遠韸) Advisor: Pei-Li Sun (孫沛立)

Graduate Institute of Color and Illumination Technology National Taiwan University of Science and Technology

Personal Detail Yuan-Peng, Pi

EMAIL : fred71016@gmail.com

EDUCATION

- B.S. in Electronic and computer engineering, NTUST 2010-2014
- Master in Color & Illuminance technology, NTUST 2014- 2016

RESEARCH INTEREST

- Color imaging processing
- Cross-media color management system

RESEARCH PROJECT

- Color gamut mapping for full color 3D printing
- Color reproduction from textile and tile
- System implementation and development of a photo curable Color 3D Additive Manufacturing Technique

PROJET[®] 460PLUS PROFESSIONAL 3D PRINTER

Build envelope capacity (W x D x H)	8 x 10 x 8 in (203 x 254 x 203 mm)
Color	White (monochrome)CMY
Resolution	300 x 450 DPI
Build material	VisiJet PXL
Layer thickness	0.004 in (0.1 mm)
Min. feature size	0.03 in (0.8 mm)
Max. vertical build speed	0.9 in/hour (23 mm/hour)
Number of print heads	2
Draft printing mode (monochrome)	No
Number of jets	604
Material recycling	Yes
Automatic build platform cleaning	Yes

Integrated

NO COLOR MANAGEMENT

Display

PROJET[®] 460PLUS 3D PRINTER

Printed

Finding the Gamut Testchart

Gamut : range of realisable colors

Printer's Gamut

Model

Device Dependent Color Transformations

Device Independent Color Transformations

ICC Profile

ICC profile is a set of data that characterizes a color input or output device, or a color space.

characterizes a color input device

characterizes a color output device

CIELAB or CIEXYZ

Printer with CMS

Input model

Source profile

3D Printer

PROJET® 460PLUS 3D PRINTER → No CMS

Do the adjustment on the 3D model's texture

We are Going to Do Make the LUT for from PCS to RGB

Gamut Mapping

We are Going to Do Make the LUT for from PCS to RGB Seamut Mapping

Clipping

• Hue-angle Preserving Minimum ΔE_{ab} Clipping (HPminDE)

 Chroma Dependent Sigmoidal Lightness Mapping and Cusp Knee Scaling (SGCK)

Color Management Method Clipping

Find the minimum distence inside the printer's gamut

Color Management Method HPminDE

STEP 1

Find the hue angle

STEP 2

Find the minimum distence inside the printer's gamut

Color Management Method SGCK

P.

Color Management Method SGCK -Lightness Adjustment

Input

Color Management Method SGCK -Lightness Adjustment

Color Management Method SGCK -Lightness Adjustment

Green Line

Color Management Method SGCK -Color Mapping

90% of the Printer's Gamut

Inside : Hold Still

Outside : Do the Mapping

Color Management Method SGCK -Color Mapping

Many colors look the same after mapping

Color Management Method SGCK -Color Mapping

50% of the Printer's Gamut

Inside : Hold Still

Outside : Do the Mapping

Result

Initial texture

Clipping

HPminDE

SGCK

Result

Initial texture

Clipping

HPminDE

3

SGCK

Psychophysical Experiment

Monitor : EIZO ColorEdge SG232W set to sRGB

12 observers

Ambient light condition was set in the dark room

Color Viewing Light Booth - D65

Psychophysical Experiment - Pair Comparison Method

Clipping

HPminDE

SGCK

Conclusion

Conclusion

SGCK is the best method for the 3D printer

