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1. CONES AND TRICHROMACY




Human colour vision

The retina is carpeted with
An inverted image of the outside world is light-sensitive cones (and rods)

formed on the retina by the cornea and lens
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Human cone photoreceptors (sensors)

» Cones

Daytime, achromatic
and chromatic vision

3 types

Middle-wavelength-
sensitive (M) or
“green” cone




Human cone (sensor) spectral sensitivities
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Human cone (sensor) spectral sensitivities

441 541 566
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Human colour vision is trichromatic

. . 441 541 566
Trichromacy arises because there l

are just three cone types (L, M & S)
with different spectral sensitivities. ' M
Each responds only according to the
number of photons it absorbs

(independent of their wavelengths).
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If we know the three cone spectral N
sensitivities, and thus the effects
that a light has on each of them, we 0.0

can completely specify that light. | e — |
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Trichromacy arises because there
are just three cone types (L, M & S)
with different spectral sensitivities.
Each responds only according to the
number of photons it absorbs
(independent of their wavelengths).

Trichromacy means that colour vision
at the input to the visual system is
simple, since you can match any
colour in terms of just 3 primary
colours (e.g., RGB).

Human colour vision is trichromatic

It is a 3-variable system
defined by LMS, RGB or XYZ...



Means that at the first stage of vision there
is @ massive loss of spectral information!

Continuous Spectral 1.0 o M

Power Distribution

3 excitations!
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I’ll be showing linear and logarithmic versions of the cone spectral sensitivities:
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2. CONE SPECTRAL SENSITIVITIES
AND COLOUR MATCHES

ARSI



Test light plus third

desaturating primary Two primary lights

Green (526 nm)
% "Blue" (444 nm)

Test half-field Mixture half-field

Test (L)
Red (645 nm)

Another way of specifying colours is
by making colour matches in a
colour matching experiment:

RGB colour matching functions

3 r(A)

b(4)  g(4)
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Test light plus third

desaturating primary Two primary lights

Green (526 nm)
% "Blue" (444 nm)

Test half-field Mixture half-field

Test (L)
Red (645 nm)

Another way of specifying colours is
by making colour matches in a
colour matching experiment:

RGB colour matching functions

3 7(A)
But what has colour matching got to

do with cone spectral sensitivities?
b(2)  g(A)
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All colour matches are matches at the level of the cones
and depend on the spectral sensitivities of the cones.
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Consequently, the cone spectral sensitivities are the:

...upon which all other CMFs depend.



As a result, there should be a simple linear transformations between RGB and LMS...
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Tristimulus value

In 2006, the CIE defined the new standard LMS functions as a linear transformation
of Stiles & Burch (1959) 10° RGB CMFs based on the work of Stockman & Sharpe
(2000):
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As well as the linear trans-
formation from RGB to LMS...
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There is also a simple linear oo

transformation between RGB
and LMS and XYZ, which was
defined by the CIE in 2015.
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Tristimulus value

In 2015, the CIE defined the linear transformation
from the 2006 LMS cone fundamentals to a new XYZ:

CIE 2006 "'
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Tristimulus value

Why do we need colour matching functions?
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Tristimulus value

Why do we need colour matching functions?
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Because colours can be defined in terms of any of these three
standard (mean) colour matching functions (Stiles & Burch (1959)

RGB, CIE (2006) LMS AND CIE (2015) XYZ CMFs). And if they are linear
combinations of one another, it shouldn’t matter which one we use...




3. INDIVIDUAL DIFFERENCES



Display standards

In principle, then, if we know the chromaticities of a colour (in

terms of XYZ, LMS or RGB), we should be able reproduce it on
6 any display, and it should look similar for all observers across
-_— all displays...
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Display standards
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- Covers 35.9%
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The first problem is that the CIE 1931 XYZ CMFs used extensively to define display
colours are incorrect, as a result of which there is no valid
transformation from 1931 XYZ to LMS...

CIE 1931 2-deg XYZ (or RGB) CMFs 2-deg LMS cone fundamentals
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The problem arises because of a serious error in the 1924 V(A) function

(which is also the Y function of 1931 XYZ CMFs)...
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The mistake is related to the choice of V(L) back in 1924...

Original data used to derive CIE V(A)

(which is also CIE 1931 )

And here is what the CIE chose in
1924

Log quantal sensitivity
N

This unfortunate choice continues to
plague colorimetry and photometry
100 years later
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We can overcome the
defects in the CIE 1931
standard functions by
using instead the CIE 2006
LMS or CIE 2015 XYZ CMFs.
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However, the use of standard or mean colour matching functions hides the sizeable
individual differences found in all colour matching and cone spectral sensitivity data.

Tristimulus value
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Display standards Because of these individual differences the colours produced on

o
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different observers on the same display and across different
displays.

0.9 0.9———
5200 | | | | 520

Covers 45.5%
of visible area

Covers 75.8%
of visible area

0.8 0.8

of visible area

0.7 0.7

0.6 0.6
500H 500
0.5 0.5
Y Y
0.4 0.4
1 620 - 620
0.3 0.3
700 700 700
0.2 0.2
Rec. 709 DCI-P3 Rec. 2020
05 06 07 08 0'?).{} : ’.m ; ; ; g ; 0.8 lDI'{‘{%L{J' 03 04 05 06 07 0.8
X X

AVS Forum



Display standards If we want to accurately reproduce colours on a display that
will look the same for different observers, we must also take

6 individual differences into account ...
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What causes individual differences?

® Macular pigment optical density differences

LN pigment optical density differences



Log,, quantal sensitivity

Individual differences are most easily visualized and modelled as effects on the
cone spectral sensitivities or on the “fundamental” LMS colour matching
functions (rather than on XYZ or RGB CMFs)...
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Individual data for deuteranopes
with the same L-cone photopigment
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Why are the results so variable at short
wavelengths?
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Individual data for deuteranopes
with the same L-cone photopigment

L

L-cone data adjusted to the same mean
macular and lens optical densities
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What causes individual differences?

> Photopigment optical density differences



Individual differences in Cone photopigments varying in optical density
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Relative absorptance
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What causes individual differences?

»> Spectral shifts in photopigment sensitivity



Why are there spectral shifts?

Spectral shifts in the positions of the M- and L-cone spectral sensitivity functions are caused
by changes (substitutions) in the genes that encode the M- and L-cone photopigments.

M-cone functions can shift towards L.

Sensitivity
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L-cone functions can shift towards M.
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Amino acid differences between the L.-and M-cone
photopigment opsins

There are only fifteen amino acid differences between the L- and M-cone photopigment opsin
genes. Only about five of those cause wavelength shifts between their spectral sensitivities.

Simplified representation of gene
(amino acid) sequences for L and M
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SPECTRAL SHIFTS

Estimates of the spectral shifts
caused by changing the five
important amino acid from the
L-cone to M-cone versions or
vice versa.

These amino acids surround the
visual chromophore in the photo-
pigment. Changing them changes
the energy and thus the photon that
triggers its conformational change...
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Values from Neitz and Neitz (2011)



M-cone shifts
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L.-cone shifts
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CVD pl’evalence Main types of colour vision defects with approximate
proportions of occurrence in the population.

percent in UK

Condition Male  Female
(0)
>0 more_than 5% of Protanopia no L cone 1.0 0.02
males will see colours Protanomaly  milder form 1.0 0.03
differently from colour
normals.
Tritanopia no SWS cone 0.008 0.008

TOTALS 8.50% 0.46%



XY inheritance

Mother

The L-cone and M-cone opsin
genes are on the X-chromosome,
so women have two copies but
men only one.

Gametes

Daughter Daughter Son Son

Figure 7 from Jackson, Marks, May & Wilson
(2018) Essays in Biochemistry 62, 643-723



What causes individual differences?

® Macular pigment optical density differences
LN pigment optical density differences
> Photopigment optical density differences

»> Spectral shifts in photopigment sensitivity



4. MODELLING INDIVIDUAL DIFFERENCES




Stockman & Sharpe (2000) and CIE (2006) standard LMS observers for 2-deg and 10-deg vision.
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Absorbance

Log absorbance

The new CIE standards also define the macular and lens pigment optical density spectra,
the photopigment optical densities and the photopigment spectra.

Photopigment absorbance curves

1.0
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optical density spectra
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We model individual differences by adjusting the photopigment absorbance curves and varying the
macular and lens optical densities

Photopigment absorbance curves .
Corneal spectral sensitivities

Macular and lens pigment
optical density spectra
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Unfortunately, the CIE (2006) LMS standards are
defined as discrete values at 5 or 1 nm steps rather
than as continuous functions of wavelength.
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For computational convenience, we want
to define these as continuous functions of

wavelength...
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First, we extended the discrete functions to 360
nm at short wavelengths and 850 nm at long
(partly to allow spectral shifts).
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Fourier polynomials were then fitted to the discrete functions and
then used to define the template shapes

The templates are of the general form:

F(@)=a, + Zn:[ak cos(k6)+ b, sin(k6)]

k=1

n is the number of harmonics.

Continuous functions of wavelength with little error when used to reconstruct
fundamentals.



Log absorbance
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-

Vv
Ro Fundamental CMFs (LMS cone spectral sensitivities)

w

7. max shift from L

-40 to +10 nm only

Optical density

Data output choices (Excel file)

Fundamental CMFs

Use codons to calculate L and M shif . "
LR e s AL i (Corneal cone spectral sensitivities)

Quantal units [ tinear

Energy units O linear

Optical density

S-cone parameters
Optical density

standard 10-deg

i
Common parameters =iz

Macular pigment density (at 460 nm)

Reset to Generate Excel file
FoLChEs defaults |

- O

Shorter ML-cone Longer LM-cone
Codon M L Exon M L  Codon

® Tyr O ser 2 OTyr @ ser
® ala O ser 3 O Ala ® ser  1g0
O Thr @ lle
() ser @ Ala 233
e OTyr ( ® Tyr 277

® ala O Thr ( ® Thr 285

O Tyr ( ® Tyr 309

ML shift (nm) 0 Done | LM shift (nm) 0

Stockman, A., & Rider, A. T. (2023). Formulae for
generating standard and individual human cone
spectral sensitivities. Color Research & Application,
48(6), 818-840.

dot: https.//dol.org/10.1002/col.22879

Python program is available on Github at: https://github.com/CVRL-Io0/Individual-CMFs.git
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Involved one correction of the CIE 2006 functions (to which we’ll come back):
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5. MEASURING INDIVIDUAL DIFFERENCES




We can overcome the
problems of individual
differences by measuring
an individual’s own cone
spectral sensitivities.

Individually measured functions
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Trichromator (LEDMax) (developed in collaboration with Thouslite)
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Collaborative work with Ronnier Luo’s lab
with Lucas Shi and Alan Song and Andy Rider
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Trichromator (LEDMax) updated version

A newer compact version
has been developed...

EHOUSLITE




Colour matching measurements White standard
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We chose 11 triplets of LEDs (primaries

lights) that can be optically mixed to
match a white standard (+)...



Colour matching measurements White standard
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We then asked observers to adjust the
intensities of each of the 11 triplets of
primaries to match the white standard...



Colour matching results
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Here are the SPDs for the 13 matching
whites (each SPD is made up of all three
primaries) set by one of our subjects.

White standard

06

0.4 r

= 03¢

0.2

01r

u'

We then asked observers to adjust the
intensities of each of the 11 triplets of
primaries to match the white standard...



Colour matching analysis
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These 13 matching whites should
all produce identical L-, M- and S-
cone excitations.

So...



Colour matching analysis
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Colour matching analysis
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are closest to producing equal excitations...
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Colour matching analysis
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By varying the lens, macular, and photopigment
optical densities and allowing spectral shifts in
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We use the continuous template functions for the model fitting...

Absorbance
Optical density

Linear
errors
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Base results

100 observers from
8 to 79 years old.

Colour normal
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L-difference

M-difference

S-difference
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2° cone spectral sensitivity
differences by age

Differences between the observers’ 2° mean
cone spectral sensitivities and the standard
CIEPOOG6 2° cone spectral sensitivities (solid
white line)by age.



L-difference

M-difference

S-difference
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700

10° cone spectral sensitivity
differences by age

Differences between the observers’ 10° mean
cone spectral sensitivities and the standard
CIEPOO6 10° cone spectral sensitivities (solid
white line)by age.



2 and 10° match parameters

tting parameters
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Red-green colour

Deuteranomalous observer = o
vision deficiency

- Obs 2° - Obs 2
08 | L | 08 | M
Colour normal
(CIE 2006)
Wavelength (nm) Wavelength (nm)
CIE
L ZI:ZZOOGZ ; . Obs 2006 2°
0.8 0.8 i
L- shift -0.1 0
M- shift 19.8 0
: N g Density of L- 0.31 0.5
' | Density of M- 0.69 0.5
Density of S- 0.31 0.4
0.2 ) ) ) ) ) 02 L ) \ \ .
400 450 500 550 600 650 700 400 450 500 550 600 650 700 Lens density 1 57 1 76
Wavelength (nm) Wavelength (nm) i
Macular density 0.321 0.350




Red-green colour

Protanomalous observer = o
vision deficiency
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Colour normal
(CIE 2006)
0 0
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a 1 CIE
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L- shift 19.5 0
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| - Density of M- 0.64 0.5
Density of S- 0.35 0.4
0.2 ) ) ) ) ) 0.2 \ ) \ \ .
400 450 500 550 600 650 700 400 450 500 550 600 650 700 Lens density 1 i 29 1 76
Wavelength (nm) Wavelength (nm) .
Macular density 0.536 0.350




Displays

o

-

520

- Covers 35.9%
- of visible area

700

Rec. 709

05 06 07 08

Using this method, we can produce individualized
colour matching functions and thus produce consistent
colours with different displays.
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If you don’t have correct for individual differences, spectral shifts of the M
or L-cones can substantially change the appearance of display devices with
narrow band primaries and large colour gamuts.

M-cone functions can shift towards L. L-cone functions can shift towards M.
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Andy Rider

Bigger colour gamut

R +42%
G -14%




CRT

OLED
Xenon

Sony 4K

PFSLCD

QD OLED(2)
Rec 2020
QDEFLCD
QD OLED(1)

Laser phosphor

RGB laser

6P Laser
20 -15 -10 -5
L-cone spectral shift (nm)
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All displays show some

level of discrepancy
for anomalous
observers, but some
are worse than others

In general, wider
colour gamut displays
have worse the
discrepancy, but not
perfect correlation
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6 mths

R +6%
G -6%
B +18%

Bigger colour gamut




Most functions (ancient and modern) and the new
CIE standards can be downloaded from:

CVRL database

hitp://www.cvrl.org
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