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Introduction

rTMQOs

& Ill-posed problem: details are lost in under- and over-
exposed regions

& Mostly involves (as outlined by Banterle et al.) the
following components.

. e Expansion of Artifact reduction & Detail
Linearization 3 ] :
Pixel values Color correction reconstruction

Tone mapped image Linear HDR image
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State of the Art - rTMOs

Linearization
Camera Response Function f(-) _ .
Scene Radiance Scene Irradiance Measured Color
RAW files —_————
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State of the Art - rTMOs Az cal.
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Expansion of Pixel values
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« Global approaches

Bright i
i Highlights :

Input LDR luminance

Meylan et al.

(1 —k)Ls(z)+ kLy,, Ls(x) it Lela) =7

Ly = . .
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State of the Art - rTMOs

Expansion of Pixel values
< @Global approaches
«» Classification and map based

< Perceptual based methods

Bilateral filter > S;;,, = S'/¥

LHtemp x) = Ls(x LHmax Y LHmin r LHmax

Inverse Gamma &
Noise Filtering

Contrast Stretching

¢ Saturated region map detected T = 0.92

s Map is filtered with Gaussian filter

¢ Flood fill contrast enhancement algorithm used to enhance
contrast around edges
Ly (x) = Lytemp %) * Map

Smooth Brightness Edge Stopping
Enhancement Function \ )

Output HDR Image

Brightness Enhancement of Saturated Regions

Rempel et al. LDR2HDR



State of the Art - rTMOs

Expansion of Pixel values
< @Global approaches
« Classification and map based

« Perceptual based methods

PCS - CIE Lab
color space — with
replaced luminance
function.

Mekides Assefa et al. Perceptual
lightness modeling for high-
dynamic-range imaging

Y
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n
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Dynamic range expansion (rTMO)

Inverse transform

Forward
transform Lightness or
Appearance q
correlates Forwar
transform

Inverse transform

Dynamic range compression (TMO)



State of the Art - rTMOs

Expansion of Pixel values
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« Perceptual based methods

ANOVA multiple comparison:
subjective evaluation results

Akyuz

Banterle

HDR ground truth
CIELab
hdr-CIELab

LDR

Kim
Michaelis-Menten

Power law
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Average scores

Mekides Assefa et al. Perceptual lightness modeling for high-
dynamic-range imaging

Complex CAMs

e T e

Tone mapped results: iICAMO6

Perceptual Quality:
s Pleasantness
¢ Color appearance fidelity



State of the Art - rTMOs

Artifact reduction & Color correction

¢ Quantization artifacts

& 8-bit per channel creates banding artifacts for
expanded luminance ranges on HDR screens

& With ground truth — Dithering, and
companding

&  With no ground truth — Decontouring (Such
as adaptive filtering and predictive
cancellation)

& Color correction

& Correction of color desaturation

B £ (Cs.H) X
Cy —rHCS, o O F(C D= '_C2+I

Tania Pouli et al. Color Correction for Tone Reproduction
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State of the Art - rTMOs

Detail reconstruction

Majority of currently available image and video content have exposure problems.

¢ Detail recovery % Artistic intent % Appearance and quality ¢ Enhancing computer vision
and imaging applications



State of the Art - rTMOs

Detail reconstruction

Color clipping correction RGB channel correlation and RGB channel saturation at different
spatial position

&

Clipped video Processed video

Inflection
point

J. Fuy, et al., “"Correcting saturated pixels in Pixel location

images” Abebe, M. A et al. “Color Clipping and Over-exposure Correction”

Over-exposure correction Bright Region Enhancement

Inverse Gamma & Smoath Brightness Edags Slopping
Noise Filiering Enhancement Function

Input LDR  Image

Cuipuit HDR Image

Brightness Enhancement of Saturated Ragions

A. G. Rempel, et al. "Ldr2Hdr: on-the-fly reverse tone mapping of legacy

L. Wang, et al., "High dynamic video and photographs ”

range image hallucination”
12



State of the Art - rTMOs

Detail reconstruction

Works well for color clipping
and specular highlights

Fails in the presence of
severely over-exposed regions




Current trends - rTMOs

& HDR standards ¢ Volumetric mapping

& Various ITU standards on PQ and HLG

¢ Color management solutions
encoding and interoperability

Large Color Volume Small Color Volume

o R 0 ,
Tone 0.6 =
Mapping 4 g
A ' 54

Rep. ITU-R BT.2390-8

FIGURE 20

Example EETFs of various target displays
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https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2390-8-2020-PDF-E.pdf
https://www.w3.org/Graphics/Color/Workshop/slides/talk/kunkel

Current trends - rTMOs

Deep Learning Methods
MIT-Adobe FiveK dataset

Overexposed image from our
dataset

Underexposed image
from our dataset

* Qver 24,000 8-bits sRGB images '
* Rendered with different exposure Y (o [ . A
settings ol m 5.8 ' : -'%“ "
* well-exposed ground-truth images . e '- 1-SNE visualization
are provided g - of our dataset
Taken from Mahmoud Afifi et al. Learning Multi-Scale Photo Exposure Correction

Properly exposed image from
our dataset

More data set and DL methods are available for under-exposed/low light image enhancement application.
15



Current trends - rTMOs

Deep Learning Methods

Slightly tone mapped HDR - LDR data set: created from RIT Photographic Survey
database and data set.
* 402 paired images and 804 unpaired images

(a) Reference HDR (b) Input LDR (¢) Slightly tone mapped HDR

Mekides Assefa et al., Content Fidelity of Deep Learning Methods for Clipping and Over-exposure Correction
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Current trends - rTMOs

Deep Learning Methods

Mahmoud Afifi et al., Learning Multi-Scale Photo Exposure Correction

Input training image

global color correction detail enhancement
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connections

L-Met skip
connections
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Level n J

Laplacian pyramid

Reconstruction loss

Pyramid loss

T

Loss function Lfinat = Y 2" Linorm (1, Y1) + Linorm, (T, Y) = log(D(T, Y'))
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4-layer U-Met with 24
output channels of
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encoder

1 3-layer U-Net with 24
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™ encoder

~] 3-layer U-Net with 16
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== ]

— log(sigmoid ()
Adversarial loss
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Current trends - rTMOs

Deep Learning Methods

GAN based 1image-to-image translation models were adapted for exposure
correction application.

ReExposeNet and UCan Pix2Pix GAN CycleGAN
M -
P

___ | _ Cycle consistency loss
&_ Pt > L1 norm

| H
..

Generator A Generator B

Adversarial Loss

RelU NG S Lcax(G,D) = E; yllog D(z.y)] + Ex. log(1 - Diz, Gz, 2)))

5{t,) = \05 - Lofn) + (1 NDSSIM(r) Ui = arg g Looan(G1D)) + AL (G

Mekides Assefa et al., Content Fldelity of Deep Learning Methods for Clipping and Over-exposure Correction



Current trends - rTMOs

Deep Learning Methods

Input Corrected Ground truth

Results and Color fidelity issues

Color and content fidelity
issues.

<y '." s 55‘ . . .
Mahmoud Afifi et al., Learning Multi-Scale Photo Exposure Correction SemanFlcaHy lnCOherent
corrections.
Creand Ground
Corrected  truth

Input  Corrected Input s
e Poor generalization.

Problems get worse for
severely over-exposed
contents.




Limitations and Future Research Directions

& Color fidelity . . .
Video streaming services
HDR Ecosystem Tracker fall 2020

& Perceptually uniform color spaces

¢ Quality intent: pleasantess, reproduction quality
& Interoperablity
& Display screens calibration:

& displays with multiple HDR stanard modes are available

% Radiometric calibration
¢ 3 3 Prosumer/Consumer Monitors
© Videos: dynamically changing scenes o e a2
¢ HDR + wide color gamut devices: volumetric mapping
& Content recovery
& Better data set

¢ Semantically coherent and cross-class attention models

& Image/video quality aware loss functions

HDR ecosystem tracker:
https://www.flatpanelshd.com/focus.php?subaction=showfull&id=1559638820

20


https://www.flatpanelshd.com/focus.php?subaction=showfull&id=1559638820
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