

Dolby Vision Overview of Key Features & Workflows

TIMO KUNKEL, PHD

DOLBY LABORATORIES, INC.

SAN FRANCISCO, CA

Introduction

- Dolby developed PQ as efficient signal non-linearity for HDR applications
- PQ is now a foundation of HDR imaging
- Dolby Vision uses PQ, but goes far beyond
- It is an imaging ecosystem designed to capture, produce, deliver and display consistent image quality from start to end

Dolby Vision End-to-End Ecosystem

2022

Selected AV partnerships

TVs

Panasonic PHILIPS SHARP SKY
Skyworth 创维 SONY TCL
TOSHIBA VESTEL III

NETFLIX

Distribute

U-NEXT

VUDU

YOUKU

Experience

MEDIATEK NOVATEK

REALTEK Synaptics

Service Provider STBs

COMMSCOPE T • Freebox HUMAX

Kaon LG U+ 🗘 ROGERS

Sagemcom sfr Skyworth 创维 Sky technicolor **verizon**

Games

■ Colby Vision

410+ Theatrical features

1,560+ Movies

6,260+ TV episodes

Overview

 Key features introduced by Dolby Vision and their benefits to image fidelity

How are these features facilitated through
 Dolby Vision tools & workflows

Key Features

1. Comprehensive Ecosystem

- **Tools:** Provide tools, SDKs and APIs to support the whole imaging pipeline
- Synchronized feature support: From capture via production and deployment to display

2. Dynamic Metadata

- Frame level accuracy: Guide color transformations based on content, not container
- Metadata Levels: facilitate extensive set of features related to mapping, interoperability, efficiency and calibration
- **Trim Passes:** Enable creative input guiding content appearance for varying display capabilities

3. Dedicated Content Mapping Engine

- Color Volume Mapping: Reduce color volume to fit target display w/o introduction of artifacts
- Effective Use of Metadata: Factor in source content metadata as well target display properties
- Automatic Ambient Light Compensation: Optimize content appearance including viewing environment
- Creative Intent Preservation: Retain intent independent of display capabilities

Display Color Volume

Image Pixels

HDR & SDR Color Volumes

The Challenge: Delivering the Potential

Option 1: Static Container Mapping (via Static Metadata)

Maps mastering color volume **container** to single ('global') rendering color volume **container**

Content courtesy of

Option 1: Static Container Mapping (via Static Metadata)

Option 2: Dynamic Content Mapping (via Dynamic Metadata)

Defined by content image statistics, source & target display capabilities

Example 1: Both Bright and Dark Colors

Example 1: Mapping HDR to SDR

Example 1: HDR to SDR Mapping Comparison

Static Container Mapping

Dynamic Content Mapping

Similar Appearance after Mapping
Still: CONTAINER mapping != CONTENT mapping

Example 2: Only Bright HDR Colors

Example 2: Mapping HDR to SDR

Example 2: HDR to SDR Mapping Comparison

Static Container Mapping

Dynamic Content Mapping

Excessive compression of highlights - loss of detail

Less compression

Example 3: SDR Range Levels Only

Example 3: Mapping HDR to SDR

Example 3: HDR to SDR Mapping Comparison

Static Container Mapping

Dynamic Content Mapping

Unnecessary scaling & compression of image resulting in contrast loss

Minimal mapping of image since already in range

Dynamic Mapping using Dynamic Metadata

- Dynamic Metadata is not the same as Dynamic Mapping
- The parameters for dynamic mapping can be computed on the fly by target device
 - Properties such as scene cuts must be identified in real time
 - Requires compute power and sufficiently large image buffers
 - Is not always accurate (e.g., can only 'look behind')
- There is significant benefit to pre-analyze source content and provide it as dynamic metadata
 - Enable a target display's dynamic color volume mapper to make more informed decision
 - E.g., metadata can provide a content 'look ahead' (in addition to 'look behind')
 - Significantly less compute power required to analyze image statistics
- Dynamic Metadata & Dynamic Mapping approaches work well together

Trim Passes: Creative Image Priority

- Image statistics for Dolby Vision dynamic metadata are computed automatically & reliably
- Instances where a creative wants to introduce a dedicated look when mapping to a particular display capability
- This can be implemented via Dolby Vision **Trim Pass metadata**

Trim Passes: Creative Image Priority

- Image statistics for Dolby Vision dynamic metadata are computed automatically & reliably
- Instances where a creative wants to introduce a dedicated look when mapping to a particular display capability
- This can be implemented via Dolby Vision **Trim Pass metadata**

Trim Passes: Creative Image Priority

- Image statistics for Dolby Vision dynamic metadata are computed automatically & reliably
- Instances where a creative wants to introduce a dedicated look when mapping to a particular display capability
- This can be implemented via Dolby Vision **Trim Pass metadata**

Content Mapping using Dynamic vs. Static Metadata

Dolby Vision Color Volume Mapping

- Use Dolby Vision Dynamic Metadata to guide Mapping
- Changes at scene cuts or by frame
- Follow Trim Passes Rules

Impact of Ambient Light on Dark Tones

- All tone values visible
- This includes deep blacks

High Ambient Light

Ambient Light Sensor

- Deep blacks and dark greys appear the same
- Lower tone values are clipped
- Overall image contrast is reduced

Automatic Brightness Control (ABC)

Step 1: Measure ambient illumination level

Step 2: Adjust Image Signal to retain image intent

Generic Solution

• Typically, <u>relative</u> offsets to dark tone values, not related to source content image statistics

Dolby Vision IQ

- Offsets based on measured <u>absolute illuminance</u>
- Computation using
 - Absolute linear light signal (from PQ)
 - Dolby Vision Source Content Metadata
- Part of Dolby Vision color volume mapping engine
- Can use existing sensors (if characterized) or additional ones

Dolby Vision End-to-End Workflow

Conforming & Color Grading

- 1. Import the source material
- 2. Cut the timeline into shots (Conform)
- 3. Use PQ and a P3 color gamut (or Rec.2020)
- 4. Output PQ to the HDR display
- 5. Fully utilize the extended dynamic range and wider color gamut to create the best-looking images according to the creative intent
- 6. Use all the tools and features on the color correction system as required

Metadata Generation & Content Delivery

Customization options for other content types: Live Sports, Gaming, User-Generated Content (UGC)

Display Mapping at Consumer Device*

^{*} This is one possible approach...

Summary

- Key enabling Technologies & Concepts
 - **Dynamic metadata** providing extensive details about the content
 - Dedicated content mapping engine
 - Optimization for **ambient** as well as **display technologies and capabilities**
 - Customization for other content types: Live Sports, Gaming, User-Generated Content
- Deployed in multiple services and platforms with hundreds of millions of devices globally across several industries
- Future-proof scalability and flexibility
- Dolby Vision provides a holistic end-to-end system enabling content to be rendered while maintaining the artistic intent

THANK YOU!

Contact: timo.kunkel@dolby.com