

Adaptive Gain Curve Tag (ADGC) and adaptiveGainCurveType

The tag and type described in this document were added to the ICC.1 specification on 17 April
2025.

Normative References

ISO 21496-1:20XX Digital photography — Gain map metadata for image conversion — Part 1:
Dynamic range conversion

ADGC Tag

Tag signature: ‘ADGC’ (41444743h)

Permitted tag type: adaptiveGainCurveType

This tag defines a gain-based global tone mapping curve for an SDR or HDR image.

It may be present when the data colour space in the profile header is RGB, and the profile class
in the profile header is Input or Display. The tag shall not be present for other data colour
spaces or profile classes indicated in the profile header. When the AGCT tag is image specific,
the flags in the header indicating that the profile is embedded and cannot be used
independently of the color data shall be set (bit position 0 = 1 and bit position 1 = 1).

adaptiveGainCurveType

The adaptiveGainCurveType specifies a gain-based global tone mapping curve, adaptive to
varying headroom, for conversion between HDR and SDR representations of the image. It
consists of a header and curve data. The adaptive gain curve function, which describes the
application of the adaptiveGainCurveType, is defined in Annex 2.

adaptiveGainCurveType header

The byte assignment and encoding of the header shall be as given in Table 1.

Table 1 — adaptiveGainCurveType header encoding

Byte
position

Field
length
(bytes)

Content

Encoded as

0 to 3 4 ‘adgc’ (61646763h) type signature

4 to 7 4 Reserved, shall be set to 0

8 to 11 4 Adaptive Gain Curve Function Type ID (set to 1 in this version) uInt32Number

12 to 27 16 GUID (all zeros when Adaptive Gain Curve is not image-specific)

28 to 31 4 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (baseline headroom in log base 2) float32Number

32 to 35 4 𝐻𝐻𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 (alternate headroom in log base 2) float32Number

28 to 31 4 Red channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑏𝑏 (in log base 2) float32Number

32 to 35 4 Red channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚 (in log base 2) float32Number

36 to 39 4 Red channel weight coefficient (𝑘𝑘𝑅𝑅𝑏𝑏𝑅𝑅) float32Number

40 to 43 4 Green channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑏𝑏 (in log base 2) float32Number

40 to 43 4 Green channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚 (in log base 2) float32Number

44 to 47 4 Green channel weight coefficient (𝑘𝑘𝐺𝐺𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏) float32Number

48 to 51 4 Blue channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚 (in log base 2) float32Number

52 to 55 4 Blue channel 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑏𝑏𝑏𝑏 (in log base 2) float32Number

56 to 59 4 Blue channel weight coefficient (𝑘𝑘𝐵𝐵𝑏𝑏𝐵𝐵𝑏𝑏) float32Number

60 to 63 4 MAX(R,G,B) weight coefficient (𝑘𝑘𝑀𝑀𝑏𝑏𝑚𝑚) float32Number

64 to 67 4 MIN(R,G,B) weight coefficient (𝑘𝑘𝑀𝑀𝑏𝑏𝑏𝑏) float32Number

68 to 71 4 Color component weight coefficient (𝑘𝑘𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎) float32Number

72 to 75 4 Pre-gain curve CICP (0 if no CICP specified) uInt32Number

76 to 79 4 Post-gain curve CICP (0 if no CICP specified) uInt32Number

88 to 91 4 Backward compatible A2B0 target headroom, 0.0: not created float32Number

92 to 95 4 Backward compatible A2B1 target headroom, 0.0: not created float32Number

96 to 99 4 Backward compatible A2B2 target headroom, 0.0: not created float32Number

100 to 107
 8

Red Adaptive Gain Curve data position
 positionNumber

108 to 115
 8

Green Adaptive Gain Curve data position
 positionNumber

116 to 123
 8

Blue Adaptive Gain Curve data position
 positionNumber

124 to 127
 4

Reserved for future use, shall be set to 0

 NOTE. Adaptive curve data offsets (byte positions 100-123) may be shared when the data is the
same for the respective components.

Adaptive Gain Curve Data

The byte assignment and encoding of the Adaptive Gain Curve data shall be as given in Table 2.

Table 2 — Adaptive Gain Curve Data Type 1 encoding

Byte
position

Field
length
(bytes)

Content

Encoded as

0 to 3 4 Count of {x, y, slope} triplets in the table uInt32Number

4 to 7 4 x coordinate float32Number

8 to 11 4 y coordinate float32Number

12 to 15 4 slope value float32Number

… … … …

16+(N-1)*12 4 x coordinate float32Number

20+(N-1)*12 4 y coordinate float32Number

24+(N-1)*12 4 slope value float32Number

Patent statement
ICC draws attention to the fact that it is claimed that compliance with this document can involve
the use of one or more patents concerning the Adaptive Gain Curve Tag.
ICC takes no position concerning the evidence, validity and scope of these patent rights. The
holders of these patent rights have assured the ICC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the
world. In this respect, the statements of the holders of these patent rights are registered with
ICC.

ICC maintains a public database of patent declarations at https://www.color.org/iccip.xalter.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights other than those identified above. ICC shall not be held responsible for
identifying any or all such patent rights.

Annex 1 Adaptive Gain Curve Function
(normative)

1.1 General

The metadata in an ADGC tag shall be used to calculate output values according to the Adaptive
Gain Curve Function.

1.2 Adaptive Gain Curve Function

The Adaptive Gain Curve Function comprises three steps:
1. an input evaluator
2. a gain evaluator
3. an output evaluator

1.2.1 Adaptive Gain Curve Input Evaluator

 The mathematical formulation of the Input Evaluator is expressed as follows:

Input value[component] = Red*𝑘𝑘𝑅𝑅𝑏𝑏𝑅𝑅 + Green*𝑘𝑘𝐺𝐺𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 + Blue*𝑘𝑘𝐵𝐵𝑏𝑏𝐵𝐵𝑏𝑏
 + MAX(Red, Green, Blue)* 𝑘𝑘𝑀𝑀𝑏𝑏𝑚𝑚
 + MIN(Red, Green, Blue)* 𝑘𝑘𝑀𝑀𝑏𝑏𝑏𝑏
 + component* 𝑘𝑘𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎

 Where component is one of {Red, Green, Blue}.

1.2.2 Adaptive Gain Curve Gain Evaluator

 The mathematical formulation of the Gain Evaluator is expressed as a piecewise cubic curve:

F(x) = C3*x3 + C2*x2+ C1*x + C0

where F(x) is normalized to be relative to the range of the gain values.

Each cubic is defined by a beginning triplet {x1, y1, slope1} and ending triplet {x2, y2, slope2}.
The triplets are contained in Adaptive Gain Curve Data and encoded as described in Table 2.

Coefficients C3, C2, C1, C0 can be calculated using these triplets as follows:

C3 = (slope1 + slope2 - 2.0 * (y2 - y1) / (x2 - x1)) / ((x1 - x2) * (x1 - x2))
C2 = ((slope2 - slope1) / (2.0 * (x2 - x1))) - 1.5 * (x1 + x2) * C3
C1 = slope1 - 3.0 * x12 * C3 - 2.0 * x1 * C2
C0 = y1 - x13 * C3 - x12 * C2 - x1 * C1

1.2.3 Adaptive Gain Curve Output Evaluator

 The mathematical formulation of the Output Evaluator comprises three steps:

1. Calculation of the target headroom weight coefficient:

𝑊𝑊𝑎𝑎𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏𝑎𝑎 = 𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺(𝐻𝐻𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ∗ 𝑐𝑐𝑐𝑐𝐺𝐺𝑐𝑐𝑐𝑐 �
𝐻𝐻𝑎𝑎𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏𝑎𝑎 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐻𝐻𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 −𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
, 0,1�

2. Calculation of the gain:

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 2(�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚+𝐹𝐹(𝑚𝑚)∗ (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚− 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)�∗𝑊𝑊𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

3. Calculation of the output:

 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑂𝑂𝑂𝑂 𝑣𝑣𝐺𝐺𝑐𝑐𝑂𝑂𝑣𝑣[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐺𝐺𝑣𝑣𝐺𝐺𝑂𝑂] = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐺𝐺𝑣𝑣𝐺𝐺𝑂𝑂] ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐺𝐺𝑣𝑣𝐺𝐺𝑂𝑂

 Where component is one of {Red, Green, Blue}.

NOTE 1. When 𝑘𝑘𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎 equals zero, the input value becomes luma A and shall be the same for all
components.
NOTE 2. It is recommended to perform the Adaptive Gain Curve calculations using double precision float
and to create a lookup table with linear interpolation which can be adjusted by controlling the slew
rate. Flat spots or saddles in the Adaptive Gain Curve could cause image quality issues.
NOTE 3. Annex 1 provides an example of calculating the Adaptive Gain Curve as a lookup table with
1024 grid points.

Annex 2 Implementation of adaptiveGainCurveType
(Informative)

2.1 General

This annex provides guidance on the implementation of adaptiveGainCurveType.

This information can be also used for creating lutAtoBType approximating Adaptive Gain Curve.

A recommended hierarchy of tags depending on the processing criteria is discussed at the end.

2.2 Calculating a Gain Lookup Table

The pseudocode below is an example of calculating a gain look-up table from the Adaptive Gain Curve.

#define MAXNODES 32

typedef struct {
float x;
float y;
float slope;

} node;

typedef struct {
 int

nNodes;
node nodes[MAXNODES];

} curve;

void computeCubicCoefficients(node *n1, node *n2, double &C3, double &C2, double &C1, double &C0)
{

double x1 = n1->x; double y1 = n1->y; double s1 = n1->slope;
double x2 = n2->x; double y2 = n2->y; double s2 = n2->slope;

double u = (x1 - x2) * (x1 - x2);
double n = s1 + s2 - 2.0 * (y2 - y1)/(x2 - x1);

C3 = n / u;
n = s2 - s1;
u = 2.0 * (x2 - x1);
e = 1.5 * (x1 + x2) * C3;
C2 = (n / u) - e;
C1 = s1 - 3.0 * x1 * x1 * C3 - 2.0 * x1 * C2;
C0 = y1 - x1 * x1 * x1 * C3 - x1 * x1 * C2 - x1 * C1;

}

#define NTABLE 1024

void createLookupTable(curve *c, float table[NTABLE+1], float gmapMin, float gmapMax)
{

node *n = c->nodes;
node *end_n = c->nodes + nNodes - 1;
float xlo = n->pt.x;
float xhi = (n + 1)->pt.x;
double C3, C2, C1, C0;

computeCubicCoefficients(n, n+1, C3, C2, C1, C0);
// compute an NTABLE-element table describing the gain factor
float slew_transfer = -1.0;
float minimum_slew = 0.00025f;
for (int i = 0; i <= NTABLE; i++, slew_tranfer += minimum_slew) {

// evaluate x at this index
float x = (float)i / (float)NTABLE;
// advance into the valid node interval enclosing x. this requires two nodes
while (x > xhi && (n + 1) < end_n) {

n++;
xlo = n->x;
xhi = (n + 1)->x;
computeCubicCoefficients(n, n+1, C3, C2, C1, C0);

}
// if not enough nodes, we sample-and-hold the curve value at the last interval's end x
x = (x > xhi) ? xhi : x;
// evaluate normalized linear gain using doubles (result may be float, though)
double dx = (double)x;
float nlg = C3 * dx*dx*dx + C2 * dx*dx + C1 * dx + C0;
// convert normalized linear gain to gain factor
table[i] = powf(2.0f, gmapMin + nlg * (gmapMax - gmapMin));

 // compute y: the factor multiplied by luma_A
 // so the transfer table would actually be f(x) = y * x

 float y = table[i];

 // compute transfer table value(x*y)
 float transfer = x * y;
 if (transfer < slew_transfer)
 {
 transfer = slew_transfer
 y = transfer / x;
 }
 table[i] = y;
 slew_transfer = transfer;

 }
 }

2.3 Applying a Gain Lookup Table

The pseudocode below is an example of applying a gain look-up table.

typedef struct
{

float r; float g; float b;
} RGB_float;

float gain_lookup(float* table, size_t count, float y)
{

size_t max_index = count-1;
float fmax = (float)max_index;
float fIndex = clampf_to_range(fmax * y, 0.0f, fmax);
uint32_t index = (uint32_t) fIndex;
float fract = fIndex - index;

float y1 = table [index];
float y2 = table [MIN(index + 1, max_index)];

 float gain = (y1 + (y2 - y1) * fract);

return gain;
}

RGB_float apply_gain_preview(float R, float G, float B)
{

float y = R*rCoefficient +
 G*gCoefficient +
 B*bCoefficient +
 MAX(R, MAX(G, B))*maxCoefficient +
 MIN(R, MIN(G, B))*minCoefficient;

float gain = gain_lookup(lookup_table, gain_lookup_table_count, y);

RGB_float out = {0.0};

out.r = gain * R;
out.g = gain * G;
out.b = gain * B;

return out;

}

2.4 Approximating Adaptive Gain Curve by luAToBType for HDR to SDR tone mapping

A lutAToBType tag can be created to approximate the application of Adaptive Gain Curve for tone
mapping an HDR image to SDR. In this case it is recommended that the A curves of the lutAToBType are
used to linearize the input data, and the 3D CLUT is calculated by applying the Adaptive Gain Curve to a
uniformly distributed 3D grid of RGB components. The CLUT is followed by a matrix converting RGB
primaries to CIEXYZ.

Representing the EOTF in a form of a lookup table sometimes leads to loss of precision due to an
insufficient number of tone levels. In this case it is recommended to use an additional encoding step to
preserve precision. For example, in the case of PQ EOTF, the additional encoding step could consist of
taking the values of the PQ ETOF to the power of 1/5 (x^1/5). This would then need to be undone (i.e.
x^5) before applying the preview curve to calculate 3D CLUT entries
It is possible to make additional adjustments to produce rendering intents A2B0, A2B1 and A2B2. The
presence of lutAToBType tags in the profile to approximate the Adaptive Gain Curve for a specific
rendering intent is indicated in the adaptiveGainCurveType header as described in Table 1 by specified
target headroom which was used for calculations. It is recommended that the SDR target of 1.0 is used for
the reason of backward compatibility with the systems which don’t support the concept of headroom.

2.5 Approximating Adaptive Gain Curve by luAToBType for SDR to HDR tone mapping.

The Adaptive Gain Curve can be used for converting SDR to HDR, so potentially a lutAtoBType tag could
be created for such a conversion, however no attempts were made by the authors of this proposal to
confirm that.

2.6 HDR tone mapping method hierarchy

Adaptive Gain Map and multiple tags in ICC profile related to HDR tone mapping provide multiple
choices of rendering method and the selection of a specific method could be based on different criteria
like desired rendering quality, available processing power, available memory, rendered image size, etc.
The hierarchy based on expected quality is as follows:

1. Adaptive Gain Map, image specific spatial conversion.
2. Adaptive Gain Curve, image specific global conversion.
3. v4 AToB0 created from Adaptive Gain Curve.
4. CICP tag, ITU Recommended Tone Mapping, non-image specific global conversion.
5. Non-image specific v4 AToB0 tag based on generic global conversion.

	Normative References
	ADGC Tag
	adaptiveGainCurveType
	adaptiveGainCurveType header
	Adaptive Gain Curve Data

	Patent statement
	}

